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Abstract:

This report deals with statistical downscaling strategies for estimating local surface wind with application to wind 
resource assessment. In particular, it summarizes the downscaling strategy used in the High Performance Computing
for Energy (HPC4E) European project Task 4.2 (statistical downscaling) by The Center for Energy, Environmental and 
Technological Research (CIEMAT).
This report aims at providing an understanding of the regional/local climatological variability of the wind through the 
identification of relationships between the most important large-scale circulations and their associated local wind pat-
terns or surface wind. The analysis of the variability of wind at regional scales and for monthly resolutions is conducted 
via a statistical method mainly based on Empirical Orthogonal Function (EOF) and Canonical Correlation Analysis 
(CCA). This is a multivariate statistical technique that isolates sets of predictor and predictand variables that are op-
timally correlated. In addition, the sensitivity associated to various methodological aspects is also explored, based on 
the argument that a single selection of the model set up cannot account, by itself, for the uncertainty in estimations that 
arise in the downscaling step. The evaluation of this uncertainty provides confidence in the robustness of the model 
skill in reproducing the observed wind and helps discriminating whether certain parameters have a decisive influence 
in the quality of estimates.

Un Ejercicio de Incertidumbres Enmetodologías de downscalingestadístico

Lucio-Eceiza, E. E.; Navarro, J.; García-Bustamante, E.; González-Rouco, J. F.; Rojas-Labanda,C.
44 pp. 48 refs. 17 figs. 3 tables

  
Resumen:

Este informe detalla la utilización de estrategias de dowscaling estadístico para la estimación del viento en superficie 
local aplicada a la evaluación de recurso eólico. En particular, resume la estrategia de downscaling estadístico utilizada
para el High Performance Computing for Energy (HPC4E) European project Task 4.2 (statistical downscaling) por el 
Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT).
Este informe pretende ayudar a comprender la variabilidad climatológica regional/local del viento a través de la iden-
tificación de relaciones entre circulaciones predominantes a gran escala y sus patrones locales asociados de viento 
local en superficie. El estudio de la variabilidad del viento a escalas regionales y en resoluciones mensuales se realiza 
mediante métodos estadísticos basados principalmente en Funciones Ortogonales Empíricas (EOF) y Análisis de Co-
rrelación Canónica (CCA). Ésta es una técnica estadística multivariante que aísla conjuntos de variables predictoras y
predictandas que están óptimamente correlacionadas. Adicionalmente, también se explora la sensibilidad asociada a 
varios aspectos metodológicos. Para ello nos basamos en el argumento de que una única selección en los parámetros





 1 

 

 

An Approach about uncertainty on 
statistical downscaling 

Etor E. Lucio-Eceiza1, Jorge Navarro2,3, Elena García-Bustamante2,3, J. Fidel 
Gonzalez-Rouco1,3 y Cristina Rojas-Labanda1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Final report 
Versión: v01 

 
 

7 de Junio de 2017 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

1 Universidad Complutense de Madrid 
2 CIEMAT 
3 Unidad Mixta CIEMAT-UCM 
  



 2 

Table	of	Contents	
An approach about uncertainty on statistical downscaling .............................................. 3	
Un ejercicio de incertidumbres en metodologías de downscaling estadístico .................. 3	
Executive Summary .......................................................................................................... 5	
1.	 Introduction ............................................................................................................. 6	
2.	 Data ........................................................................................................................... 9	

2.1	 Observational datasets, predictands. .................................................................... 9	
2.2	 Large scale variables, predictors. ...................................................................... 17	

3.	 Statistical Downscaling Methodology. ................................................................. 19	
4.	 Downscaling Experiment: reference case ............................................................ 21	

4.1	 Large and local scale coupled dynamics ........................................................... 21	
4.2	 Estimations derived from the reference case ..................................................... 28	

5.	 Uncertainty assessment. ........................................................................................ 29	
5.1	 Uncertainties related to parameter configuration. ............................................. 29	

5.1.1	 Spatial uncertainty ...................................................................................... 30	
5.1.2	 Temporal uncertainty .................................................................................. 32	

5.2	 Uncertainties related to predictor source ........................................................... 34	
6.	 Conclusions ............................................................................................................. 37	
Acknowledgements ........................................................................................................ 40	
References ...................................................................................................................... 41	

 

  



 3 

An approach about uncertainty on 
statistical downscaling 

This report deals with statistical downscaling strategies for estimating local 
surface wind with application to wind resource assessment. In particular, it 
summarizes the downscaling strategy used in the High Performance Computing 
for Energy (HPC4E) European project Task 4.2 (statistical downscaling) by The 
Center for Energy, Environmental and Technological Research (CIEMAT). 
 
This report aims at providing an understanding of the regional/local 
climatological variability of the wind through the identification of relationships 
between the most important large-scale circulations and their associated local 
wind patterns or surface wind. The analysis of the variability of wind at regional 
scales and for monthly resolutions is conducted via a statistical method mainly 
based on Empirical Orthogonal Function (EOF) and Canonical Correlation 
Analysis (CCA). This is a multivariate statistical technique that isolates sets of 
predictor and predictand variables that are optimally correlated. In addition, the 
sensitivity associated to various methodological aspects is also explored, based 
on the argument that a single selection of the model set up cannot account, by 
itself, for the uncertainty in estimations that arise in the downscaling step. The 
evaluation of this uncertainty provides confidence in the robustness of the 
model skill in reproducing the observed wind and helps discriminating whether 
certain parameters have a decisive influence in the quality of estimates. 

Un ejercicio de incertidumbres en 
metodologías de downscaling 
estadístico  

Este informe detalla la utilización de estrategias de dowscaling estadístico para 
la estimación del viento en superficie local aplicada a la evaluación de recurso 
eólico. En particular, resume la estrategia de downscaling estadístico utilizada 
para el High Performance Computing for Energy (HPC4E) European project 
Task 4.2 (statistical downscaling) por el Centro de Investigaciones Energéticas, 
Medioambientales y Tecnológicas (CIEMAT). 
 
Este informe pretende ayudar a comprender la variabilidad climatológica 
regional/local del viento a través de la identificación de relaciones entre 
circulaciones predominantes a gran escala y sus patrones locales asociados de 
viento local en superficie. El estudio de la variabilidad del viento a escalas 
regionales y en resoluciones mensuales se realiza mediante métodos 
estadísticos basados principalmente en Funciones Ortogonales Empíricas 
(EOF) y Análisis de Correlación Canónica (CCA). Ésta es una técnica 
estadística multivariante que aísla conjuntos de variables predictoras y 
predictandas que están óptimamente correlacionadas. Adicionalmente, también 
se explora la sensibilidad asociada a varios aspectos metodológicos. Para ello 
nos basamos en el argumento de que una única selección en los parámetros 
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del modelo no puede, por sí misma, considerar la incertidumbre en las 
estimaciones que se dan durante el proceso de downscaling. La evaluación de 
esta incertidumbre nos ofrece confianza en la robustez de la capacidad del 
modelo en reproducir el viento observado y nos ayuda a discriminar entre 
parámetros que puedan o no tener una influencia decisiva en la calidad de 
dichas estimaciones.  
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Executive Summary 
This executive summary compiles the most relevant results and conclusions 
achieved within the development of this report. These points are reported in 
bullets and referred to the corresponding section or chapter within this report 
where a more detailed description is provided. 
 
An approach about uncertainty on statistical downscaling: 

• The downscaling method based on EOF and CCA is able to identify the 
major large and local scale coupled circulation patterns; 

• This methodology also offers predictive skill over the local observations, 
although it underestimates the variability, a common downside in linear 
methods; 

• It is a robust statistical method as it remains basically unaffected by the 
use of different crossvalidation periods; 

• It is, however, sensible to model configuration changes, specially in 
sites/wind components with larger variability; 

• It is not equally sensible to every parameter, either: those with largest 
impact are the retained number of EOF/CCA modes and window size; 

• The predictor source (i.e. used reanalysis model) on the other hand has 
little impact on the estimations; 

• The uncertainty width can vary through time, to the point of even altering 
the regional dynamics. 
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An Approach about uncertainty on 
statistical downscaling 

1. Introduction 
Surface winds are not only governed by the radiative and rotational 
mechanisms that drive large scale circulation, but also by processes of different 
nature and lifetime. The aggregated influence of all of them shapes the 
complicated behaviour of the wind field at smaller temporal and spatial scales. 
One of the main contributors to the complexity of wind variability is the 
orography that induces substantial variations to the geostrophic flow. The 
presence of extensive geographical attributes like oceans, large mountain 
ranges and desserts or smaller scale terrain features like hills, valleys or urban 
settlements are responsible for thermally driven flows, momentum transport 
circulations caused by gravity waves or turbulent mixing, and forced 
channellings of the wind. As the local scale becomes important, more physical 
processes are involved in the wind circulation. This is the case, for instance, of 
boundary layer dynamics, which enhance or hamper local flows depending on 
the effectiveness of the turbulent mixing.  
 
The generalized definition of regional scale refers to a sub-continental scale 
with high heterogeneity in climatic features that are the product of interactions 
of phenomena at multiple timescales, from intra daily to multi centennial, 
combining mesoscale circulations and local forcings. The need of assessing the 
regional climate variability can be thought in terms of two different viewpoints. 
On one hand, the understanding of the multiple interactions of physical 
mechanisms playing a role in generating climatic variability at regional spatial 
scales can be still considered a challenge. On the other hand, mankind is 
subjected to countless sociological, political, economical, environmental and 
cultural aspects that are very sensitive to climate variability. 
 
The wind field can be loosely considered as the local response to the large 
scale circulation. This response includes, and is sometimes overridden by, the 
effect of the orography and a variety of additional factors such as vegetation, 
land-sea interactions or other thermally-driven phenomena. This combination of 
large and smaller scale forcings imposes a high spatial as well as temporal 
variability on the surface wind field. The large variability and the vectorial nature 
of the wind field introduces an additional complexity to its diagnosis and 
prediction, providing a valuable scientific interest on this topic. Exploring its 
variability at the regional scale involves practical applications that range from 
the short term wind forecasts to the assessment of climate change. 
 
The complexity and multiplicity of the mechanisms involved at the regional 
scales calls for a wide spectrum of techniques and strategies that may be 
applied to gain insight into the regional climate problem. In practice no strategy 
can totally compensate the need for measurements to accurately describe the 
climate fields and their variations (Trenberth, 2008) and indeed many studies 
pursue an assessment of the surface wind field variability providing statistical 
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descriptions of wind related variables based solely on observed records 
typically at the regional/local scale (García-Bustamante et al., 2012, 2013, 
GB12 and GB13 hereafter; and Lucio-Eceiza et al., 2017c; LE17c hereafter). 
The quality of observations and the scarceness, both in space and time, of 
measurements are two factors that hamper the informative power of such 
assessments. The quality of observations is usually bounded by the presence in 
records of inhomogeneities, gaps, missing data or errors associated with 
measurement errors and data management issues (Jimenez et al, 2010 and 
Lucio-Eceiza et al, 2017a, 2017b, LE17a,b here after). The limited coverage of 
observations is often a problem in many regions that difficults or even impedes 
variability studies on lower frequencies, for which longer records are needed. 
Such regional/local approaches can be complemented by analyses with a 
broader spatial perspective in which the regional/local variability is studied in 
terms of changes in the large scale circulation of the atmosphere. In fact, 
specific strategies can be designed to capture the interactions between large 
scale dynamics and the regional/local scale variability. These so called 
downscaling techniques (von Storch and Zwiers, 1999) can be exploited to 
deliver estimations and/or predictions of regional variability for different 
purposes. 
 
The downscaling approaches employ large scale atmospheric circulation 
information to obtain estimations of variables at the regional/local scale by 
identifying the main statistical associations between both spatial scales 
(statistical downscaling) or explicitly resolving the physics involved using 
mesoscale models (dynamical downscaling). The large scale atmospheric state 
is provided by gridded observations, reanalysis data or general circulation 
model (GCM) outputs. One of the assets of the downscaling strategies is that 
they allow overcoming GCMs deficiencies in simulating the regional climate. 
This lack of reliability arises because of their coarse spatial resolution (ca. 100 
to 300 km) which does not allow adequately resolving sub-grid scale processes 
that need to be parameterized.  The concept of across-scales or downscaling 
approach is already applied in the early 1960s when methods were designed to 
establish classifications of the large scale atmospheric states and then relate 
them to the local observed features of the climate. During the subsequent 
decades dynamical and statistical downscaling strategies were adopted in order 
to satisfy the needs at regional and local scales. 
 
The dynamical downscaling is based on the use of regional circulation models 
(RCMs) that solve the fundamental equations of the atmosphere yielding finer 
time-space simulations. These models that originally were used for numerical 
weather prediction issues are also called limited area models (LAMs) and 
evolved as sophisticated versions of GCMs over a confined geographical area 
with typical spatial resolutions that range from the 50 km to 10 km or even 
higher (Jiménez et al., 2010b). 
 
The use of RCMs may imply however relatively high computational resources. 
Thus, the empirical or statistical approaches stand as a practical procedure to 
explore connections between the large scale forcings or predictors and the 
regional/local response of a climatic variable or predictands (García-
Bustamante et al., 2012, 2013 and Lucio-Eceiza et al., 2017c). The 
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computational demand is lower than in the case of RCMs and the 
implementation of the statistical model, although dependant on the selected 
strategy is to a great extent more straightforward than that of RCMs. 
Notwithstanding, statistical downscaling methods can provide also an 
understanding of the physical mechanisms responsible for the variability of 
regional fields. From a different perspective, they can also be applied within 
GCM simulations for validation purposes by assessing the ability of the models 
in generating consistent large scale forcings in different regions of the globe. 
The statistical downscaling methods require training historical data of both 
predictand and predictor variables in order to identify the relationships between 
them. 
 
The application of statistical downscaling techniques to variables like 
precipitation (e.g., González-Rouco et al., 2000) or temperature (e.g., Xoplaki et 
al., 2003a,b) using the sea level pressure or other alternative large scale 
predictor fields is widespread in the literature. However studies of the wind field 
variability based on statistical approaches are relatively scarce (e.g., Kaas et al. 
1996; Najac et al. 2009). 
 
The transfer of information between spatial scales involves many sources of 
uncertainty that propagate from the global to the regional/local scale in 
downscaling exercises (GB12,13 and LE17c). In the context of future climate 
projections, the uncertainties associated with the radiative forcing are 
accounted for by considering a variety of climate change scenarios and by the 
use of a suite of GCMs to represent the intermodel variability. For instance, 
Pryor et al. (2006) studied the possible changes of surface winds in northern 
Europe through the downscaling of several GCM simulations under different 
scenarios. The uncertainty associated with the use of a specific model for the 
downscaling step can also be addressed. In the case of RCMs, the effect of 
changes in the discretization of the equations of motion or the different 
parameterizations can imply changes that contribute to uncertainty in the 
simulated regional field. In the case of statistical methods, the effect of applying 
different methodologies can also be examined (Zorita and von Storch, 1999). 
Even in the case of using one specific downscaling method, uncertainties arise 
from a number of somewhat subjective decisions taken in the design of the 
statistical model. Usually such decisions are founded on good practice and lead 
to skillful estimations of the target regional variables. However, introducing 
changes in the model configuration by changing parameter values, spatial 
domains, etc., would produce somewhat modified, though still skillful 
estimations (GB12, 13 and LE17c). These additional uncertainties are difficult to 
estimate, but they can at least be explored considering a variety of configuration 
designs in the downscaling approach. This path illustrates the sensitivity to 
changes in the model configuration, what can be regarded as a methodological 
variability or methodological uncertainty. Nevertheless, this type of studies are 
rather uncommon in the case of wind related variables, thus an exploration of 
the methodological sensitivity of statistically downscaled wind field seems 
pertinent. Furthermore, the uncertainty may also arrive from potential 
inaccuracies of the GCMs or reanalysis as they provide the large scale 
information that feeds the downscaling models (LE17c). For this reason, it is 
also interesting to explore the uncertainty that is associated to the use of 
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different datasets as boundary and initial conditions in the case of the 
dynamical downscaling or as predictors if dealing with statistical models. 
 
In this work we present three Statistical Downscaling (SD) exercises in which 
we describe the regional and local behavior of the surface zonal and meridional 
wind fields, and wind power production. These exercises are carried out over 
two distinct regions of the world, north of Spain and Northeastern North America, 
with their own very different domain scales and geographical characteristics. In 
all the cases, the analysis is conducted over monthly timescales and during 
wintertime. For these analyses only one SD technique will be used, which is 
mainly based on Empirical Orthogonal Functions (EOF; Lorenz 1956) and 
Canonical Correlation Analysis (CCA; Karl 1990). In exchange for that, however, 
a complete in-depth evaluation of the methodology will be presented: along with 
the description of the coupled local and large-scale main circulation modes, we 
also evaluate the predictability of the wind/power production via this 
methodology and a complete sensitivity evaluation of the predictability to 
changes on the configuration parameters. Additionally, we will extend the SD 
outside the calibration period and evaluate this reconstruction exercise and its 
associated sensitivity. 
 
The description of the observational database and large scale variables is 
presented in Section 3. A thorough description of the methodology is given in 
Section 4. The description of the main large scale and local coupled circulation 
modes are described in Section 5. The predictability of the method and 
sensitivity to parameter configurations is presented in Section 6. The summary 
and conclusions are given in Section 7. 

2. Data 
2.1 Observational datasets, predictands. 

For the present work three observational datasets are used, located over two 
distinct regions. The first two databases are situated along the orographically 
complex Comunidad Foral de Navarra (CFN, see Fig. 1a), situated over the 
north-east of Spain and with the Bay of Biscay to the north and the Pyrenees to 
the north-east as natural barriers. The surface wind speed and direction 
database used for the current exercise consists on 29 meteorological stations 
that span from January 1992 to September 2005 (colored circles; GB12), a 
reduced subset from the original set of 41 observational sites (Jiménez et al. 
2010a). The original observations are taken at 10-minutes for wind speed and 
wind direction. The anemometers are located either at 10 meters (white circles) 
or 2 meters (orange). From these initial measurements the zonal (u) and 
meridional (v) components of the wind are computed and then monthly 
averaged for the specific purposes of the study herein. Due to the short 
existence of some of the sites, not all of them could be included during the 
statistical downscaling exercise. The wind power production database consists 
on the three wind farms, whose power outputs were obtained as the spatial 
averages of every wind turbine at each farm (pink squares; García-Bustamante 
et al. 2008). These farms have observational wind speeds recorded at hub 
height (between 30 and 40 m). The wind and wind power records of the farms 
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span from June 1999 to May 2003. For CFN, the analyzed period is an 
extended winter season going from September to March (7 months), 
corresponding to the windiest months in this region (GB12, GB13). 
 
The mean flow in the CFN (Fig. 1b) is directed from NW to SE, channeled from 
the northern valleys along the Ebro Valley (Jiménez et al. 2008a). This is a 
characteristic cold and dry wind pattern in the CFN region known as Cierzo. The 
flow in the opposite direction (SE to NW) is known as Bochorno, resulting from 
the advection of moist and warmer air from the Mediterranean Sea. The wind 
farms located at the center of the region show a NE-SW flow in agreement with 
the mean direction at the surrounding stations while the other, more northerly 
located, presents a more SE-NW direction. This is explained by the fact that the 
northern area in the CFN is exposed to a different large scale circulation regime 
than the central and southern sections of the region (Jiménez et al. 2008b). 
 
The spatially averaged, or regional, zonal and meridional wind components (Fig. 
1b) present opposite sign throughout the whole period with a correlation value 
of -0.77. This suggests a conservation of the surface momentum between both 
wind components at these timescales (Jiménez et al. 2008b). The regional 
series present a substantial intra and interannual, of great interest in the context 
of wind energy assessment.  Fig. 1c shows the standardized monthly wind 
speed (blue) taken at hub height, and wind power production (magenta) at El 
Perdón wind farm where it is evidenced a linear connection between both 
variables (García-Bustamante et al. 2009) for the whole observational period 
with a correlation value of up to 0.94. 
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Figure 1: (a) The area under study: the left panel shows the Iberian Peninsula and the main 
geographical features surrounding the CFN. The right panel amplifies the region of the CFN and 
its orography (shading). Circles stand for the location of the wind stations and squares 
correspond to the wind farm locations at Alaiz, Aritz and El Perdón. Orange circles represent 
those stations with anemometers at 2 m while the rest are located at 10 m height (see Jiménez 
et al. 2010a, Table 2.4, for sites description).The arrows indicate the mean wind speed (length) 
and direction (angle) computed for the SONDJFM months. (b) Temporal evolution of the 
SONDJFM monthly regional zonal (red) and meridional (blue) wind components. The thicker 
lines correspond to the 3 years moving averages. (c) Standardized wind speed (blue) and wind 
power production (magenta) for the same months at El Perdón. (a,c) are modified figures from 
GB13 and (b) from GB12.  
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The third observational database consists on a surface wind speed and 
direction database of hourly, 3-hourly and synoptic resolution comprised by 525 
sites located across the region of North Eastern North America (NENA, Fig. 2a; 
LE17a): 434 of these sites span over Atlantic Canada, Ontario and Quebec; 52 
are located across 5 northeastern estates of USA; an additional 40 buoys are 
located over the open sea nearby the eastern Canadian coast and the 
Canadian Great Lakes. The database spans from January 1953 to January 
2010, although it is unevenly distributed over time and space. To avoid 
problems related with data representativeness, for this SD exercise a subset of 
95 sites (Fig. 2a in magenta) has been selected. The calibration period has 
been also limited to 1980-2010 (LE17c). As with the previous case, the hourly 
wind speed and direction data have been converted to zonal and meridional 
wind components and then averaged to monthly resolution. As with the former 
experiments, this study will be centered during wintertime, during the months 
from November to March (5 months), which is also the season of highest winds 
and associated wind variability. 

 
Due to the privileged geographical location of this region, the large scale 
dynamics foster the transit of most summertime and wintertime cyclonic events 
that originate all over North America. From Western Canada (Mackenzie and 
Alberta Lows), through central (Colorado Lows) and southeaster areas (Coastal 
and Hatteras lows) of the contiguous United States, and from closer origins 
(Hudson and Great Lakes lows) as well (Conrad 2009). These cyclones can be 
either from tropical or extratropical origin (Plante et al. 2014), and are more 
frequent and intense during wintertime (Wang et al. 2006). In combination with 
topographical effects and channelings such as the suetes (Cape Breton) or 
wreckhouse winds (Newfoundland), these cyclonic events make this region 
prone to extreme events especially during the winter months (Richards and 
Abuamer 2007). The mean winter winds are predominantly westerlies (Fig. 2a), 
reaching their maximum values along the coast of Labrador, Newfoundland and 
open sea. Although this is a relatively flat area, with mountains no higher than 
1000m, there are some places of pronunciated heights with a very high 
associated winds (e.g. Mount Washington, at ~2000m with 16 m s-1 winds). Fig. 
2b shows the regional zonal and meridional averages for the whole 
observational period, calculated from the subset used for the SD exercise. The 
wind components show a pronounced intra and especially interannual variability, 
mostly concentrated through periods 1953-1975, 1980-1990 and 1995-2005. A 
prevalence of westerly wind can be observed throughout the whole 
observational period. For meridional winds, however, a progressive stilling of 
the northerly flows is observed, a tendency that is reduced for the last decades. 
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Figure 2: (a) Mean wind speed of the original database computed with a extended winter 
season consisting on the NDJFM months. The mean wind speed is given by the color code and 
length of the arrow. The topography is given in grayscale. The circles in magenta correspond to 
the 95 sites out of the original 525 used in this exercise. (b) Regional zonal and meridional 
averages obtained averaging the magenta sites. The thicker lines correspond to a 5-month 
centred running mean. The beginning of the calibration period (1980) is marked with a vertical 
green line. Modified from LE17c. 
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Accurate observational records are necessary to any realistic climotological 
assessment. Unfortunatelly, despite of the care put during the instrumental 
siting, recording, and data storage and management, a vast arrange of possible 
errors may emerge, errors that can have a potentially drastic effect on the 
measured variables. Although some preventive masures can be taken to avoid 
many of the problems, it is nevertheless paramount to develop an ancirally 
series of tests or checks that are able to detect the large variety of issues that 
might still be inadvertently present. These methods are known as Quality 
Control procedures, and target issues that can be mainly grouped into two 
categories: 
 

• Data Management Issues (LE17a). They target issues related with data 
transcription and collection or with errors occurred during data 
manipulation, Additionally they handle with standardization of practices 
that can vary across institutions like measurement, units or reference 
times, which can be issues of importance for datasets built using data 
from various source institutions 

• Measurement Errors (LE17b). These tests address the temporal or 
spatial consistency in the data. They are designed to deal with errors 
often produced at the moment of sampling, due to instrumental 
malfunction, calibration or exposure problems. They target errors that are 
generally of local nature and less likely to depend on procedures 
established by the data source institution. 

 
The aforementioned datasets have been subjected to an exhaustive Quality 
Control procedure (Jiménez et al. 2010a, LE17a,b). Since an in-depth 
description of the methods that have been devised and applied is beyond the 
scope of this work, we will only describe some illustrative cases for each family 
of errors. found at each datasets. We refer the interested readers to the related 
papers for further information.  
 
A particularly interesting case among Data Management Issues are the  periods 
of data that might have been accidentally duplicated during data retrieval, 
transmission, and archival. These errors can take place within the same series 
(intra-site duplications, see Fig. 3a) or to accidentally transfer data from one 
series to another (inter-site duplications, Fig. 3b). These duplication can entail 
brief 24-h periods of data or involve up to several years of mismanaged records 
(LE17a). It is not trivial to sort out between naturally occurring duplications 
produced by a combination of atmospheric similarities, pure chance and data 
paucity, and those genuinely erroneous ones. There are, however, some 
features shared by the erroneous intra- and inter- duplications. The intra-
duplications tend to share common date features as they are primarily caused 
by data resubmission under two different time stamps. Similarly, the inter-site 
duplications are often caused by one misfiled report under two different stations 
and are expected to occur simultaneously in time  
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Figure 3: (a) Example of an intra-site duplication error for wind speed records at Lekaroz. The 
two consecutive 24-h periods in red have coincident observations. (b) Example of an inter-site 
duplication error for wind speed records between the sites of Aguilar de Codés (in orange) and 
Aoiz (blue). A whole 24-h period (in red) is simultaneously shared by both sites. Both 
correspond to sites located at CFN and are a modified version from Jiménez et al. (2010a). 

 

Figure 4: (b) Monthly wind speed of a site located at Saint John (New Brunswick) before (red) 
and after (blue) standardization to its reference height (10 m). Vertical color bars indicate 
documented anemometer heights. (b) Wind rose showing wind direction bias before (left) and 
after (right) correction, corresponding to a site located at Nicolet (Quebec) with 3 changes, each 
indicated by a line of different color. 
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Figure 5: Spatial distribution of (a) differences in mean and (b) standard deviation ratios before 
and after the QC. Spatial distribution of skewness (c) before and (d) after the QC. Modified from 
LE17b. 

Regarding Measurement Errors, those associated with systematic biases might 
have a great impact on the observational time series, as they can span from 
weeks to several decades. These errors are related to a great variety of factors 
such as changes in the measuring devices, different averaging methods, 
changes in anemometer heights or changes in exposure or site relocation. They 
can be corrected making extensive use of collected metadata, as in the case of 
wind speed biases produced by anemometer height changes (Fig. 4a) or 
detected and corrected thanks to algorithms suited to identify sudden changes 
in the orientation of wind direction vanes (Fig. 4b). For more information about 
the detection and correction of these and other problems please refer to 
LE17a,b. 
 
The detection and eventual removal/correction of these errors affected with 
varying degrees on the different sites depending on their original quality, but 
they overall had a clear impact on the general statistics of the datasets. Fig. 5 
shows the effects on the QC process on the surface wind database located in 
NENA (LE17b). This evaluation has been made for mean wind speed (a), 
standard deviation (b) and skewness (c,d), obtained from the calculation of the 
1st to 3rd order moments (von Storch and Zwiers 1999). The majority of the sites 
remain unaffected or with small changes. In others, however, the changes are 
evident, with up to 200 m/s differences in the mean (a) and standard deviation 
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ratios (b). A considerable reduction on the skewness, a measure of the 
asymmetry of the distribution, can also be appreciated (c,d) for several sites. 
 

2.2 Large scale variables, predictors. 
 
For the Statistical Downscaling exercises presented in this work, six variables 
have been used as predictor fields (see Table 1): sea level pressure (SLP), 850 
and 500 hPa geopotential height (Z850 and Z500), 10 m height or surface level 
meridional and zonal wind components, and 500-850 hPa thickness (∆Z). 
These variables have been obtained either as products of several reanalysis or 
from observational gridded databases. The gridded observational or 
reconstructed SLP datasets were compiled from a variety of data sources (see 
references). The reanalysis models, on their hand, use different assimilated 
data, assimilation schemes and model characteristics. Additionally each 
predictor source has each own horizontal resolution, providing, in principle, 
different information on the large scale dynamics. All in all, this ensemble of 
sources allows for an extensive mapping of all the possible sensitivities 
associated to the data source. 

Table 1: Characteristics of the variables employed as predictors: variables considered for the 
exercises, data source, level and units. Modified from LE17c. 

Variable Source Level Units 

SLP Gridded Data/Reanalysis Surface hPa 

U,V Reanalysis 10m* m s-1 

Z Reanalysis 850, 500 hPa m 

∆Z Reanalysis ∆Z=Z850-Z500 m 

*for CFSR and 20CRv2c reanalysis models, surface level 

 

For the SD experiments of surface wind fields (GB12) and wind power (GB13) 
conducted in CFN, the variables were obtained from Era-40 reanalysis (Uppala 
et al. 2005) at a 2.5ºx2.5º resolution (see summary of predictor sources in Table 
2). A SLP reconstructed gridded database from Luterbacher et al. (2002) was 
also used for sensitivity experiments beyond the observational period of the 
predictand, at 5ºx5º horizontal resolution. 
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Table 2: Reanalysis models and observational datasets used in this analysis: name, institution, 
time coverage, used spatial resolution and useful references. Modified from LE17c. 

Name Institution Time Range Grid Resolution Reference 

Reanalysis Models 

Era-40 ECMWF 1958-2001 0.75x0.75/2.5x2.5 Uppala et al. (2005) 

Era-Interim ECMWF 1979- 0.75x0.75 Dee et al. (2001) 

Era-20C EMCWF 1900-2010 0.75x0.75 Poli et al. (2016) 

JRA25 JMA 1979- 1.25x1.25 Onogi et al. (2007) 

JRA55 JMA 1958-2012 1.25x1.25 Ebita et al (2011) 

MERRA NASA 1979- 0.5x2/3 Rienecker et al. (2011) 

NCAR-R1 NCEP-NCAR 1949- 2.5x2.5 Kistler et al. (2001) 

DOE-R2 NCEP-DOE 1979- 2.5x2.5 Kanamitsu et al. (2002) 

CFSR NCEP 1979- 0.5x0.5 Saha et al. (2010) 

20CRv2c NOAA et al. 1851-2015 2x2 Compo et al. (2011) 

SLP Gridded Datasets 

Luterbacher  1650-1999 5x5 Luterbacher et al. (2002) 

 

For the SD experiment in NENA (LE17c) the variables were obtained from 10 
different reanalysis models (Table 2): 3 from the ECMWF, Era-40, Era-Interim 
(Dee et al. 2011) and Era-20C (Poli et al. 2016) all of them at 0.75ºx0.75º; 2 
from the JMA, JRA25 (Onogi et al. 2017) and JRA55 (Ebita et al. 2011) at 
1.25ºx1.25º; MERRA (Rienecker et al. 2011) from NASA, at 0.5ºx2/3º; from 
NCEP 3 more, NCAR-R1 (Kistler et al. 2001), DOE-R2 (Kanamitsu et al. 2002), 
both at 2.5ºx2.5º and CFSR (Saha et al. 2010) at 0.5ºx0.5º; and from NOAA, 
20CRv2c (Compo et al. 2011), at 2ºx2º. 
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3. Statistical Downscaling Methodology. 
The statistical method used in this work is mainly based on EOF and CCA 
techniques. Before any further step, however, the annual cycle of the original 
predictor and predictand fields is removed by subtracting the monthly 
climatological mean, thus obtaining anomaly fields. These time series are also 
detrended applying a linear least square fit in order to ensure the long-term 
stationarity and avoid spurious relationships between data points (Xoplaki et al., 
2003b). In order to account for the latitudinal distortions, the detrended 
anomalies from the large scale fields are weighted at each grid point by 
multiplying by the square root of the latitude to consider the decreasing size of 
grid boxes with latitude (North et al., 1982b). Finally, the time series are 
standardized (dividing by their standard deviation). 

These detrended and standardized fields are then independently projected onto 
their S-mode EOF space (González-Rouco et al. 2000). This step allows to only 
retaining the modes with maximum explained variance, thus reducing noise, 
and at the same time drastically diminishing the number of degrees of freedom 
(Lorentz 1956). These predictor and predictand EOF fields are the information 
ingested by the CCA technique. This multivariate statistical technique isolates 
linear associations between sets of predictor and predictand EOFs that are 
optimally correlated (Glahn, 1968). The linear associations are called canonical 
component vector or canonical coordinates and they are normalised to unit 
variance. The number of obtained CCA modes cannot, by definition, exceed the 
number of introduced EOF modes. The original variables can be expressed as 
a linear combination of its canonical coordinates and its canonical correlation 
patterns. The canonical coordinates or scores describe the amplitude and sign 
of the corresponding patterns at each time instant. 

The estimation of the predictand field is obtained with a regression model that 
presents the predictand variable as a linear combination of the canonical 
coordinates and patterns, and the predictor fields (Zorita and von Storch 1999). 

The skill of the statistical model is verified using a crossvalidation approach. 
This allows to reduce a possible overfitting of data by the model (Barnett and 
Preisendorfer, 1987). The crossvalidation is a resampling technique in which a 
small number of data is dismissed and the model is trained with the retained 
data subset. The removed values are then estimated with the calibrated model. 
This procedure is repeated recursively by sampling subsets of the same length 
along the entire observational record in order to obtain a full set of independent 
estimates (Michaelsen, 1987). 
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Figure 6: Different large scale domains (boxes) used as predictor windows in GB11 and GB12 
(left), and LE17c (right). 

Inherent to the downscaling methodologies are the associated uncertainties that 
are propagated through the established relationships between the large scale 
and local information. A fundamental level of uncertainties, that will not be 
addressed in this work, is related to the choice of one SD technique over 
another. Other uncertainties are, on the other hand, related to the particular 
choice of some parameters in the statistical model. We have systematically 
explored the effect that the change on five different parameters have in this 
statistical model (they are summarized in Table 3): 

• The variable chosen as predictor. This parameter evaluates the 
predictability of the predictand to the dynamics of different surface or 
upper variables. The predictor can range from a variable used alone .(e.g. 
SLP, see Table 1) to a combination of multiple variables (e.g. 
SLP+UV+Z850). GB12,13 use up to 25 possible combinations, and LE17c 
up to 18 combinations. 

• The size of the spatial domain of the predictor fields. As illustrated in Fig. 
6, 9 windows have been used for CFN and 5 for NENA. The size of the 
windows has been selected to go from the smallest possible ones that fit 
the observational domain, to those that comprehend the large-scale 
phenomena that could affect the region: Atlantic and Mediterranean for 
GB12,13 and Atlantic and Pacific Basins for LE17c. 

• The number of retained EOF and CCA modes. As it has been introduced 
before, the CCA method computes linear combinations of predictor and 
predictand EOF patterns, which means that the method is sensitive to 
the number of introduced EOF modes: too few EOF could ignore modes 
with a significant signal, while too many could overfit the model to our 
particular dataset. Additionally, as the estimations are calculated with the 
CCA patterns, these are also sensitive to the number of retained CCA 
modes. There are many methods to select the minimum or maximum 
number of significant EOF modes, being an easy but effective one the 
visual Scree test (Cattell 1966). GB12,13 explore a range of 
EOFpredictor/EOFpredictand/CCA modes that goes from 2/2/2-6/6/6 
ecompassing 31 possible choices. LE17c on the other hand, range from 
4/4/2-7/7/7 with 62 possibilites. 
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• The size of the crossvalidation subset. This parameter evaluates the 
robustness of the statistical method to changes in the 
calibrated/estimated sample size. GB12,13 selected between 9 subsets, 
1 month and 28 months (7 years), and LE17c between 5 subsets, 1, 2, 5 
(1 year), 10 or 20 (4 years) months. 

• Source of the predictor variables. This parameter analyzes the sensitivity 
of the estimations to the Source of the predictor variables. LE17c 
compare the outcomes between 10 different reanalyses (see Table 2). 

Table 3: Parameters selected for the sensitivity analysis. The second and third column 
correspond to the number of combinations used in each experiment. 

Parameter GB12,13 LE17c 

Predictor 25 18 

Window 9 5 

EOF/CCA 31 62 

Crossvalidation 9 5 

Predictor Source  10 

 

Prior to this uncertainty analysis, a reference configuration has been chosen, 
which is presented in the next section. Despite not being the optimum 
configuration, it nevertheless offers a valuable information about the leading 
coupled predictor and predictand dynamics in the three different study cases, 
and the predictive skill of the method. It also offers a starting point for the 
sensitivity analysis presented in Section 5. 

4. Downscaling Experiment: reference case 
This section analyses the results of the reference configurations at each 
experiment. First, we describe the first coupled mode at each case, then we 
proceed to look at the estimated regional predictand obtained from this 
reference configuration. For a description of the rest of coupled modes in each 
configuration please refer to GB12,13 and LE17c, respectively. 

 

4.1 Large and local scale coupled dynamics 

The chosen reference configuration in CFN for the analysis of the surface wind 
field (GB12) combines Z850 and ∆Z as predictors; it uses the window 4 (see 
Figure 5a) for the description of the large-scale dynamics; it retains 4 (4) 
predictor (predictand) EOF modes, accounting for the 81.5% (90.2%) of 
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explained variance; 2 CCA modes are retained for the estimation of the wind. 
The sampling subset of the crossvalidation is set to 1 month. 

The leading pair of canonical patterns (CCA1) is presented in Figs. 7a,b for the 
predictor and predictand variables. Their associated Canonical Series is 
presented in Fig. 7c. This first mode accounts for 18% (22%) of the total 
variance of the Z850 (∆Z) predictor field and around 36% of the total predictand 
variance. The large scale pattern (Fig. 7a, contours for ∆Z, shaded for Z850) 
depicts a dipole structure with positive anomalies over the North Atlantic area 
that reaches the west side of the Iberian Peninsula. Negative anomalies are 
located northeast of the British Isles, centred over the Scandinavian Peninsula. 
The coupled CCA1 pattern for the predictand (regional wind) presents NW-SE 
wind oriented anomalies which can be related to the well known 
regional ’Cierzo’. This pattern corresponds to the positive phase of the mode, 
although it should be noticed that the reverse sign of the patterns is also 
possible, as it is determined by the sign of eigenvalues of the cross-correlation 
matrix (von Storch and Zwiers, 1999). In contrast, the negative phase of this 
mode presents a southeasterly flow that advects the relatively warm and moist 
air from the Mediterranean that can be regarded as the typical ’Bochorno’. As it 
can be observed, the two patterns are physically meaningful since the large 
scale mode induces a pressure gradient that favours a NW-SE (SE-NW) 
direction for the geostrophic wind. The orientation of the Ebro Valley, aligned 
with this NW-SE direction, also contributes with a strong channeling effect at the 
surface. The local wind pattern arises as the result of the large scale 
atmospheric structure modulated by the regional orographic configuration. In 
agreement with a more meridional large scale circulation, in this canonical 
mode the largest amount of explained variance (46%) corresponds to the 
meridional component of the wind while in the case of the zonal one, 
accounting for a smaller portion (25%) of variance for the zonal component. 
This large scale pattern is broadly responsible for predominant meridional 
circulations not only in the region under study, but also in wider areas over the 
European continent. It has been found that this same large scale regime causes 
a partial blocking of the westerlies, associated with the Mistral conditions (Buzzi 
et al., 2003; Burlando, 2009). 
 
The corresponding Canonical Series (Fig. 7c) present a correlation of 0.87 and 
exhibit considerable intra and inter annual variability with extreme values at the 
end of 1995 and 1999. It shows a higher variability till 2000 and slightly lower 
thereafter. This change in the regional wind variance is noticeable in both the 
predictand and predictor series, suggesting to changes in the large scale 
circulation variability. The canonical series of the local wind components 
presents a correlation of 0.92 and -0.83 with the regional time series of the 
observed zonal and meridional wind components, respectively. This first 
canonical mode describes the most important changes in regional monthly wind 
variability for the period studied. 
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Figure 7: Canonical patterns and series of the first CCA mode (CCA1). (a) Predictor patterns, 
Z850 m (shaded) and ∆Z m (contours); the explained variance of the Z859 and ∆Z field is also 
indicated; (b) predictand (local wind in the CFN) pattern together with the variance accounted 
for by this mode; wind farms are represented with white squares. c) canonical series for 
predictor (blue) and predictand (red), their associated correlation value is also indicated. 
Modified from GB12. 

The chosen reference configuration in CFN for the analysis of the wind power 
production (GB13) also combines Z850 and ∆Z as predictors and uses the 
window 4 (see Figure 5a) for the description of the large-scale dynamics; it 
retains 4 (2) predictor (predictand) EOF modes, accounting for the 81.5% (97%) 
of explained variance, and 2 CCA modes. The sampling subset of the 
crossvalidation is also set to 1 month. 
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The first pair of canonical patterns (CCA1) are shown in Figs. 8a,b. The 
variance explained by the first canonical mode is 25 % in the case of the large 
scale predictors and 63 % for the wind power. The large scale dynamics consist 
of a negative anomaly center located westward of the British Isles, a 
configuration connected with anomalous southwesterly flows in the region 
(Jiménez et al. 2009). The corresponding local pattern shows a dipole with 
positive anomalies of wind power production to the north and negative ones to 
the center of the region. This pattern is coherent to that obtained with wind 
velocities (not shown) as predictand. It shows windy conditions equivalent to 
positive wind power anomalies in the northern areas and a decelerated flow, 
equivalent to negative wind power anomalies, to the center of the region. It is 
worth noting that the large scale pattern resembles the second pattern obtained 
by GB12 for the zonal and meridional wind field (not shown). This pattern was 
found to be responsible for anomalous eastward geostrophic flow over the 
region. The corresponding canonical pattern of the wind therein showed a more 
zonal orientation of the circulation at the windiest locations over northern and 
central parts of the CFN, thus, at the wind farm locations. Since the farms are 
located at higher elevations, are less affected by local effects and exhibit a 
large influence of quasi-geostrophic circulations. Hence, the variability of both 
the wind and the wind power at these specific locations is dominated by the 
same large scale patterns. 

The corresponding Canonical time Series present a strong correlation (0.89, Fig. 
8c). The correlations between the canonical series and monthly wind power 
observations reaches ~0.7 at the sites, suggesting that this mode is responsible 
for the wind power monthly production. The correlations show opposing signs of 
Aritz respect to El Perdón and Alaiz (not shown), which is consistent with the 
canonical pattern (Fig. 8b). 
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Figure 8: First canonical pair of patterns (CCA1) of (a) the predictor fields (Z850 m, shaded, and 
∆Z m, in contours); (b) regional wind power pattern field or predictand ;and (c) associated 
Canonical Series. Modified from GB13. 
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The reference configuration for NENA (LE17c) uses SLP as predictor variable 
and window B (Fig. 6b) to the describe the large-scale dynamics. It retains 4 (4) 
predictor (predictand) EOF modes, accounting for 78.1% (70.9%) of the 
explained variance. It retains 3 CCA modes for the estimation of the local wind, 
as the 4th CCA pair bears a very low correlation value (and associated physical 
meaning). The sampling subset of the crossvalidation is set to 1 month. 
Although the same configuration has been run for all the reanalysis models (see 
Table 2), here we will only present the outcomes from Era-Interim. 

The first Canonical Pattern is shown in Fig. 9a. This first mode accounts for 
30.4% (26.7%) of the total variance for the predictor (predictand). The Predictor 
field, SLP (isolines), presents a zonal dipole structure with positive anomalies 
centred over the North Atlantic and negative anomalies centred between 
Greenland and Iceland, below the Denmark Strait. The associated predictand 
CCA pattern of surface zonal and meridional wind speed anomalies (arrows), 
shows a clockwise spinning structure, SW to NE, with higher wind speeds at the 
East Coast, specially along the coast of Labrador, Newfoundland and Nova 
Scotia, and a weaker response around Great Lakes and Ontario. The two 
patterns are physically linked, as the large scale mode induces a pressure 
gradient that favours SW-NE flows. This flow also tends to fill the negative 
anomaly pressure system of the north, as expected. The orographic anomaly of 
Mt. Washington (see Section 2.1) produces the largest wind variability on the 
whole region. This is offers a practical example of the convenience of using 
correlations over covariances for EOF and CCA exercises to reduce spurious 
weightings due to variability disparities within the database.  The large scale 
pattern shows an equivalent barotropic structure in ∆Z (shadings), suggesting a 
coupling between the large and local scale that extends to the upper air levels. 

The associated Canonical Series (CS1, Fig. 9b) show a correlation of 0.85. The 
first decade shows the largest variability and extreme values. This period is 
followed by a 5 year interval with the lowest variability, which is regained 
afterwards, although not as large as before. The 1990-1995 interval shows a 
persistent tendency for positive anomalies. These changes also manifest in the 
predictor series, suggesting to variability changes in the large scale dynamics. 
The meridional flows are the most strongly modulated by this pattern as the 
meridional component (Fig. 2b) shows significant correlations values of ~0.8 
with the canonical series at a 0.05 level (p<0.05). The correlation value is lower 
(~0.5) for the regional zonal component. 

 

 

 

 



 27 

 

Figure 9: (a) First CCA pattern (CCA1) using SLP as predictor and ERA-Interim as source. 
The isolines correspond to SLP (predictor, hPa), the shadings to ∆Z (regressed pattern, m) and 
the vector filed to the predictand (m s−1). The wind speeds are given with the color scheme. (b) 
First CS of the predictor (blue) and predictand (red). The correlation between both is also given. 
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4.2 Estimations derived from the reference case 

The estimation of the regional surface wind components in CFN (Figure 10; 
GB12) show a good accordance with the observations, with correlation values 
of 0.79 and 0.80 for the zonal and meridional component respectively, all 
significant (p<0.05). 

 

Figure 10: Regional estimated and observed monthly (a) zonal and (b) meridional wind 
component anomaly series. Their correlation values are also indicated. Modified from GB11. 

In contrast with the high correlation values of the wind components the wind 
power production (Figure 11; GB13) is worse predicted, with correlation values 
for Aritz with 0.7, El Perdón with 0.54 and Alaiz with 0.33. These values are in 
accordance with the lower correlation values with wind velocity estimations 
(GB12, not shown) with which they keep a linear relationship in monthly scales 
(García-Bustamante et al. 2009 and GB13). The low correlation values with 
wind velocity can be explained on the basis of the non-linear transformations 
applied to obtain it from the wind components together with the potential 
accumulation of the errors from each component. 

 

Figure 11: Local estimated and observed monthly wind power anomalies for (a) Aritz, (b) El 
Perdón and (c) Alaiz. Their correlation values are also indicated. Modified from GB12. 

As with CFN, the estimated regional wind anomalies obtained from the 
reference model also show a great accordance with the observations in NENA 
(Figure 12; LE17c) with correlation values between the estimated and observed 
regional zonal (meridional) wind component anomalies of 0.83 (0.73), all 
significant (p<0.05). 
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Figure 12: Regional estimated and observed monthly (a) zonal and (b) meridional wind 
component anomaly series. These estimations have been produced with Era-Interim reanalysis 
alone. Their correlation values are also indicated 

These results evidence a certain underestimation of the variance that can be 
attributed to the linear constraint imposed by the method in the search of 
associations between the regional and the synoptic circulations (von Storch and 
Zwiers 2003). 

5. Uncertainty assessment. 
In this section we evaluate the uncertainties associated with the statistical 
downscaling model. The methodological sensitivity is assessed in order to 
evaluate to what extent a certain choice of parameters in the configuration of 
the experiment (for example, the reference case) produces an impact in the 
estimations, thus exploring the robustness of the downscaling strategy. The 
approach consists in allowing a certain degree of variability in each parameter 
that is important for the model configuration. This variation of parameters 
generates an ensemble of estimates that will allow for an assessment of the 
spatial and temporal variability of the methodological sensitivity. The 
parameters subjected to change have been previously presented in Section 3. 
Variations in any of the first four parameters (predictor variable, window size, 
retained modes and crossvalidation subset) set a family of possible model 
configurations and will be addressed in subsection 5.1. The fifth parameter, 
however, is external to the model configuration itself as it is the source of the 
predictors and its effects will be addressed in section 5.2. 

5.1 Uncertainties related to parameter configuration. 

This evaluation is conducted in two phases. At first, a simpler approximation on 
the sensitvity is presented, where, rooted in the reference configuration and 
changing one parameter at a time a small number of combinations can be 
sampled. This approximation allows for an assessment of the spatial variability 
of the method sensitivity to changes in one specific parameter (see Table 3). 
Then, an exhaustive analysis is carried out in GB12, where all the parameters 
are independently changed, producing a large ensemble of configurations. By 
doing so the temporal evolution of the methodological sensitivity is studied. 
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5.1.1 Spatial uncertainty 
This uncertainty analysis evaluates the parameter type with the highest 
sensitivity, fixing one parameter at a time while freely changing the rest. Here 
the sensitivity is defined as the spread of the ensemble of estimations at each 
observational site. The range of the configuration parameters is given in Section 
3. 

Fig. 13 shows the most important parameters for zonal (a) and meridional (b) 
components in CFN in terms of produced uncertainty. In both cases, the most 
important parameter is the size of the window used for the large scale 
information, followed by the number of retained EOF/CCA modes and variable 
type as predictor. The crossvalidation subset size is irrelevant in every case, 
indicative that the methodology is statistically robust. The meridional 
estimations show a greater sensitivity than the zonal ones, related with the 
natural higher variability of meridional winds (Figs. 13c,d). In fact, the sensitivity 
vs. variability plot show a linear relationship between these characteristics. 
Although these analyses are conducted over anomalies, the nature of the wind 
PDF relates higher variability to higher mean wind speeds, suggesting that in 
sites with higher wind speeds the estimations are more sensitive to the 
parameter configurations. This is confirmed by the higher sensitivity values for 
the sites in the north and those corresponding to the wind farms (Sections 2 
and 4). 

Similar results have been found in NENA (LE17c; Fig. 14, exercise presented 
for Era-Interim reanalysis), where the main parameters are either the retained 
number of EOF/CCA modes or window size (a,b). The sites with higher 
sensitivity values are distributed close to the coast, and over channelings that 
foster higher variability (c,d). The outlier in (c,d) corresponds to Mt. Washington, 
the windiest site on the whole area. This site, incidentally, is more prone to be 
affected by the predictor variable of choice. Being located in a mountain, is less 
affected by local particularities and more by the geostrophic flows, that are 
better captured by upper level predictors. In NENA, contrary to CFN, the 
variability, and thus the sensitivity values, is higher for zonal winds. 
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Figure 13: (a,b) Methodological sensitivity to parameter changes for (a) zonal and (b) 
meridional winds. The sensitivity (in m/s) is indicated with the diameter of the circle. The color of 
the inner circumference indicates the most relevant parameter at each site (green is related with 
window size, violet with predictor variable, blue with the number of retained EOF/CCA modes, 
yellow with the crossvalidation subset size). (c,d) Sensitivity value versus standard deviation at 
each site for (c) zonal and (d) meridional winds. Modified from GB12. 
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Figure 14: Same as Fig.11 but for North Eastern North America, with Era-Interim reanalysis. 

 

5.1.2 Temporal uncertainty 
This analysis allows all the parameters to vary freely, giving rise to a 
considerably larger number of estimations. In addition to that, the estimation of 
the wind field has been extended beyond the calibration period used in the 
previous exercises. This experiment allows to assess the behavior of the 
ensemble not only in the short timescales that involve the calibration, but also 
along interdecadal and even multicentenal timescales. To achieve the longest 
possible reconstruction period, the downscaling method has been applied with 
Luterbacher et al. (2002) SLP gridded database (see Table 2) as predictor. The 
reconstruction has been obtained projecting the CCA modes obtained during 
the calibration period (1993-1999 for this database) over the whole length of the 
predictor anomalies (1650-1999). 

The ensemble of reconstructed regional zonal and meridional wind components 
is shown in Fig. 15. Some general features regarding the long term past 
variability can be discussed, observing the overall uncertainty band. The higher 
variability that the meridional (Fig. 15b) component presented during the 
calibration period (e.g. Fig. 10) is still maintained for the whole reconstructed 
period. In the same way, the negative correlation between the two components 
also exists at longer time scales as a consequence of the momentum 
conservation. High anomalous winds (vertical blue lines, Fig. 15a,b) can be 
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observed, specially in the meridional component, in the second half of the 17th 
and 20th centuries, the first half of the 18th century, the beginning of the 20th 
century and during the observational period (in magenta). No significant trends 
at multicentennial scales are found for the whole reconstruction period.  

A sensitivity analysis of the number of retained canonical patterns on the 
estimated wind components is also presented. For that, the uncertainties 
associated with the estimated wind components have been separated 
according to the inclusion (orange) or exclusion (gray) of the third and fourth 
canonical modes. The first situation produces a visible bias to positive (negative) 
zonal (meridional) anomalies in the earlier years of the reconstruction, while the 
opposite is true for the case with only two canonical modes (gray in Fig. 15). 
The third large scale canonical pattern (CCA3, not shown) consists in a dipole 
with positive anomalies over the eastern North Atlantic and a center of opposite 
sign located to the north of the IP contributing to NE-SW wind anomalies in the 
region, ideal for Cierzo conditions (de Pedraza 1985). The strength of the 
association of this pattern with the regional wind in the northeastern Iberian 
Peninsula is variable and might be related to the time interval considered in the 
calibration period (GB12). The projection of its corresponding canonical series 
is presented in Fig. 15c. A negative tendency of the series is apparent, leading 
to a reversal on the sign of the large scale pattern. This reversal might be 
responsible of the reverse of sign in the past wind estimations depending on the 
inclusion or not of the third canonical mode. The apparently tenuous impact of 
the retained EOF/CCA modes evidenced during the calibration/validation period, 
turns out to be of importance in the application of the downscaling model 
outside of the calibration period. This fact stress the need for assessing and 
understanding of the uncertainties associated to the methodology for obtaining 
downscaling estimates and illustrates that estimations based on a single 
configuration of the model must be interpreted with care. 
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Figure 15 Uncertainty showing the influence of the inclusion of the third and fourth CCA mode 
obtained using Luterbacher et al. (2002) SLP reconstruction as predictor for zonal (a) and the 
meridional (b) wind component. Gray areas correspond to the case with only two canonical 
patterns while orange stands for the cases including the third and fourth patterns. The 
observations are given in magenta. (c) The projection on the third canonical series from the 
middle of 17th century till present. All the series present a 2 year moving-average filter. Modified 
from GB12. 

5.2 Uncertainties related to predictor source 

In addition to the previous uncertainty analysis a fifth parameter has been also 
introduced related to the source used for the predictor fields (LE17c). As was 
previously commented (Section 3.2), the reanalysis models present very 
different grid resolutions, assimilated data and dynamical and parameterization 
schemes which could entail, in principle, differences in the described large scale 
dynamics.  

As a first exercise we present the regional and local wind estimations obtained 
from a particular model configuration. This configuration was run using each of 
the 10 different reanalysis models in Table 2 as predictor sources. This 
configuration has been chosen to yeld good estimation results, enabling the 
assessment of the predictive skills of this method. The configuration chosen for 
this exercise uses SLP as predictor, the smallest window (window A, Fig. 6b), 7 
predictor and predictand EOF modes, retains 6 CCA modes for the estimation 
and uses a crossvalidation subset of 1 month. 

The regional and local estimations derived from the 10 reanalysis models are 
presented by means of a Taylor diagram (Fig. 16; Taylor 2001) for zonal (a) and 
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meridional (b) components, respectively. This polar diagram integrates the 
information about correlation, standard deviation ratio and RMSD in a concise 
way. The correlation value is given with the angle, from worst to best in a 
clockwise fashion, and the standard deviation ratio is given by the radial 
coordinate. The RMSE value is indicated in concentric green circles. Each of 
the small dots represent a site, and the large ones the corresponding regional 
average. Each reanalysis is represent with a different color. 

To address the goodness of the predictive skills in a concise way, we have 
grouped the results into 3 differentiated regions (r1, r2, r3, Fig. 16). As it can be 
appreciated, the statistical model offers a good balance between correlations 
and ratios (r2) for most of the sites, specially for zonal winds (up to 97% of the 
sites for zonal and 93% for meridional components), regardless of the predictor 
source. The few sites with bad correlation values (r1) are located in places with 
complex orography such as mountain ridges, valleys and small islands (not 
shown). On the other hand, the sites with unrealistic variability representation 
(r3) are mostly placed to the SW of NENA (not shown), less responsive to the 
zonal fluxes driven by North Atlantic large scale patterns, the most relevant 
ones in this region. Zonally channeled narrow straits and sea entrances are 
pose more problems for meridional estimations, leading to a worse predictive 
performance. Overall, the method tends to underestimate the variability at the 
sites, a common problem between linear downscaling techniques (see Section 
4.2). 

As it can be observed, the regional averages (large dots) show correlations and 
ratios that depart from the centroid of individual sites, offering much better 
results. This is due to the fact that the regional averages can cancel out many 
local effects that in some cases are not well captured by the downscaling model, 
yielding better results than what are locally able to (GB12). The ratios of the 
regional estimations are very close to 1, offering a regional realistic variability 
description. 

One of the most remarkable aspects of these results is that they unanimously 
lead to very similar results irrespective to the reanalysis model used as source. 
To deepen into this, a sensitivity analysis like the one presented in Section 
5.1.2 has been conducted extended to every reanalysis model. As with the 
former case, the results are hardly dependent on the choice of one reanalysis 
over another (not shown). This can be explained by the fact that the main large 
scale patterns that govern this region can be described basically in the same 
way regardless of the underlying grid resolution (among many other factors). 
Figure 17 illustrates such a case when SLP variable is used as predictor, but 
similar outcomes can be observed for other variables (not shown). The cross-
correlations between the first 7 Principal Components between all the 
reanalysis sources (Fig. 17a) present values higher than 0.95 in the best case 
(PC 1) and 0.7 for the worst case (PC 6), with averages around 0.9. The ranges 
of their explained variances (inset) are, in the same way, very close, which 
denotes a similar description of the underlying dynamics. Figs. 17b and 17c 
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show the time evolution of PC1 and PC6. In PC6, although there are some 
differences in higher frequencies, it can be observed that the long term 
tendencies are similar for the whole ensemble of reanalysis models. 

 

 

Figure 16: Taylor diagrams constructed with the model estimations using SLP-7/7/6-A-1 
configuration in relation with the observations (highlighted sites Fig. 2a) for 10 reanalysis (colors, 
see Table 2). Each small dot corresponds to a particular site while the large ones depict the 
regional averages. (a) shows the results for zonal winds and (b) for meridional winds. Each 
Taylor diagram is divided in 3 regions according to their correlation values and standard 
deviation ratios: r1 (pink) addresses the estimation with poor temporal correlation values 
(ρ<0.5); r2 (blue) comprises those with best correlation and standard ratio values (ρ≥0.5 and 
0.75 ≤ σ/σ ≤ 1.25); r3 (yellow) corresponds to sites with good correlation values but bad 
variability representation. 
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Figure 17: (a) box-plot of cross-correlation values between all the reanalysis sources from PC 
1 to 7 for SLP predictor and B window. Inset, range of explained variances is indicated. (b) and 
(c), temporal plot of PC 1 and 6 for all the reanalysis sources (colors). 

6. Conclusions 
In this work we analyze the surface wind (GB12, LE17c) and wind power 
monthly behavior (GB12) via a Statistical Downscaling methodology mainly 
based in EOF and CCA techniques. The experiments have been conducted 
over two distinct geographical areas, Comunidad Foral de Navarra (CFN) and 
North Eastern North America (NENA); and calibration period lengths, 1993-
2005/1999-2003 (CFN) and 1980-2010 (NENA), but are centered during the 
wintertime season in all the cases. We have identified the major large scale 
circulation patterns (predictor) related to the local variability (predictand) and the 
predictability of the surface wind via this method. We have also described the 
spatial and temporal methodological uncertainties to different parameter 
changes. 

Previous to these studies, and to ensure the accuracy of the results, the 
observational databases (predictand) were subjected to an exhaustive battery 
of quality checks (Jiménez et al. 2010a; LE17a,b). These tests are focused on 
the identification and correction/removal/flagging of two families of errors: data 
management issues (LE17a) and measurement errors (LE17b). The corrections 
have been proven to have a clear impact on the general statistics of the dataset 
(e.g., Fig. 5), which underlines the importance of QC procedures to assure any 
meaningful climatological analysis. 

Three major circulation patterns have been described with the help of a 
reference configuration. In the case of CFN, the leading mode for wind consists 
on a dipole of positive anomalies over the North Atlantic area and negative 
anomalies located northeast of the British Isles that favor NW-SE wind flows 
also known as ‘Cierzo’. For wind power, the leading mode consists on a 
negative anomaly center located westward of the British Isles that favors 
southwesterly flows and decouples the behaviour of the northern farms (positive 
anomalies) from the center (negative anomalies). For NENA, the leading large-
scale mode consists on a zonally distributed dipole structure with positive 

-4

-3

-2

-1

 0

 1

 2

 3

 4

 1980  1985  1990  1995  2000

P
C

 1
, 

s
lp

Time

Era-40

Era-Interim

JRA25

JRA55

MERRA

NCAR-R1

DOE-R2

CFSR

20CRv2c

Era-20C

-4

-3

-2

-1

 0

 1

 2

 3

 4

 1980  1985  1990  1995  2000

P
C

 6
, 

s
lp

Time

Era-40

Era-Interim

JRA25

JRA55

MERRA

NCAR-R1

DOE-R2

CFSR

20CRv2c

Era-20C

b)

c)

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

PC1 PC2 PC3 PC4 PC5 PC6 PC7

C
o

rr
e
la

ti
o

n
 C

o
e
ff

.

Principal Components, SLP

PC1: 34-35%

PC2: 20-23%

PC3: 14-15%

PC4: 07-08%

PC5: 04-05%

PC6: 03-04%

PC7: 03-04%

a)
p90 p10

Q3 Q2 Q1

max min



 38 

anomalies centred over the North Atlantic and negative anomalies centred over 
Greenland favouring SW-NE clockwise flows that primarily affects the Eastern 
area. This reference configuration, despite not being the most skillfull one, still 
allows us to estimate the local variability with correlation values around ~0.8 for 
regional wind and ~0.6 for local wind power. The two areas of interest show 
opposite characteristics as CFN (NENA) shows a greater meridional (zonal) 
variability and higher predictive skill. The estimations of wind power are related 
to those of monthly wind speed (GB12), an expected outcome due to the linear 
relationship between them at monthly timescales (García-Bustamante et al. 
2009). In every case the variability is slightly underestimated, a downside of 
linear dowscaling techniques. 

The downscaling uncertainty has been evaluated according to changes in four 
configuration parameters (predictor variable, window size, retained EOF/CCA 
modes and crossvalidation periods) and an additional external parameter 
(predictor source). 

For the first case the uncertainty has been assessed either varying one 
parameter type a time (small ensemble, spatial evaluation) or allowing free 
independent variations (large ensemble, temporal evaluation). The spatial 
evaluation has showed that the parameter that exerts a larger uncertainty in the 
estimations is either the number of retained EOF/CCA modes or by the size of 
the window for the predictors. On the other hand, the sites with larger variability 
(typically located over mountains, by the coast or in natural channellings) are 
more sensitivity to the model configuration, following a linear relationship. The 
method is also statistically robust, as the crossvalidation subset bears almost no 
effect. The temporal evaluation has been conducted over multicentenal 
timescales using the downscaling technique to reconstruct the wind 
components beyond the calibration period over CFN. The analysis of the 
ensemble of estimations has shown that the uncertainty ranges obtained during 
a certain period are not necessarily preserved over other periods, exerting 
drastic changes in the regional estimation of the wind components. Both 
perspectives have demonstrated that estimations based on a single 
configuration must be interpreted with care. 

Regarding the uncertainty related to the predictor source. A similar analysis as 
the spatial evaluation has been conducted over NENA, using 10 different global 
reanalysis models as sources. The sensitivity analysis shows that the reanalysis 
models do not play a major role in the uncertainty as their estimations are fairly 
similar, largely due to the fact that they describe essentially the same large-
scale dynamics. Moreover, a local site by site comparison of the estimations 
given by a certain parameter configuration (that has been repeated for many 
others as well) delivers very similar results. This configuration, chosen to offer 
one of the best possible estimations, also shows that the method reproduces in 
a realistic manner the temporal behavior and variability of most of the sites. 

The statistical method appears as a robust approach to estimate the monthly 
wind and wind production in these regions. Estimations with single configuration 
must be interpreted with care, specially for reconstruction exercises. The linear 
predictor-predictand relationship that are established through this method tend 
to underestimate the variability of the predictand. This suggest that it might be 
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interesting to study alternative approaches that do not emphasize the linearity in 
the methodology. In addition to that, this analysis filters out non-linear 
processes that resolve in shorter than monthly timescales that might also 
contribute to some extent to the wind variability underestimation. This calls for 
the investigation at, for instance, daily timescales, in order to test their skill in 
reproducing higher frequency wind or wind power variability. 
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