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ABSTRACT

This study analyzes the daily-mean surface wind variability over an area characterized by complex to-

pography through comparing observations and a 2-km-spatial-resolution simulation performed with the

Weather Research and Forecasting (WRF) model for the period 1992–2005. The evaluation focuses on the

performance of the simulation to reproduce the wind variability within subregions identified from observa-

tions over the 1999–2002 period in a previous study. By comparing with wind observations, the model results

show the ability of the WRF dynamical downscaling over a region of complex terrain. The higher spatio-

temporal resolution of the WRF simulation is used to evaluate the extent to which the length of the obser-

vational period and the limited spatial coverage of observations condition one’s understanding of the wind

variability over the area. The subregions identified with the simulation during the 1992–2005 period are similar

to those identified with observations (1999–2002). In addition, the reduced number of stations reasonably

represents the spatial wind variability over the area. However, the analysis of the full spatial dimension simu-

lated by the model suggests that observational coverage could be improved in some subregions. The approach

adopted here can have a direct application to the design of observational networks.

1. Introduction

The study of wind field over a specific region can be

undertaken from a purely observational standpoint (e.g.,

Baker et al. 1978; Martner and Marwitz 1982; Wendland

1982; Klink 2002; Jiménez et al. 2009). Alternatively, this

can be taken on through model-based approaches that

allow for a more complete understanding of the physical

processes and mechanisms involved (e.g., Mahrer and

Pielke 1977; Mahrer et al. 1985; Rife et al. 2004).

Observational-based studies target an accurate rep-

resentation of wind variability at the regional level, as-

suming that local in situ information is representative

for some area around the site and that the integration of

this information for all sites is sufficient to provide good

regional-scale coverage. However, the reliability on the

representation of the regional flow can be hampered by

the quality and availability of wind records. Topography

also impinges on the regional representation by in-

creasing the complexity of the flow as a consequence of

its interaction with large-scale dynamics and radiation

(Whiteman 2000).

Model-based assessments lean on models of either di-

agnostic or prognostic type. The diagnostic models blend

observational information and modeling to provide a

physically consistent interpolation of the wind field. This

is achieved by imposing constraints such as the conser-

vation of mass through the continuity equation (e.g.,
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Sherman 1978; Goodin et al. 1980; Ludwig et al. 1991;

Endlich et al. 1982). Somewhat more elaborate diagnostic

models are based on the theory of Jackson and Hunt

(1975) and its extension to three dimensions by Mason

and Sykes (1979), which linearized the equations of mo-

tion to obtain an analytical solution (e.g., Walmsley et al.

1982; Troen and Petersen 1989). These models provide

satisfactory results over hilly terrain (Jenkins et al. 1981;

Mason and King 1984), but their application to steep

slopes typical of complex terrain regions can be prob-

lematic because of the linearization applied to the gov-

erning equations. In addition, diagnostic models do not

take into account thermal effects. Thus, their use is de-

signed to evaluate the effects of orography on steady

mean wind flows (Ratto et al. 1994).

A more realistic representation including thermal ef-

fects is provided by prognostic mesoscale models (Pielke

2002). These models numerically solve the Euler equations

to derive physically consistent meteorological fields, usu-

ally after applying some simplifications such as Reynolds

averaging (Reynolds 1895) and representing subscale

physical processes in the form of parameterizations

(e.g., Black 1994; Grell et al. 1994; Cotton et al. 2003;

Skamarock et al. 2005). The initial and boundary con-

ditions necessary to perform the simulation are obtained

from a general circulation model. The accuracy of the

mesoscale model in representing the wind field can be

evaluated by comparing the simulations with indepen-

dent observational information (e.g., Mahrer et al. 1985;

Rife et al. 2004; Zagar et al. 2006). Additionally, hybrid

approaches can enhance the spatial resolution of a me-

soscale simulation using a diagnostic model (e.g., Ludwig

et al. 2006); however, their reliability is conditioned to

that of the mesoscale simulation and the suitable rep-

resentation of physical processes.

The evaluation of numerical simulations has some un-

certainties when comparing with local information is

involved (von Storch 1995). Some works compare in situ

observations with the nearest simulated grid points (Cox

et al. 1998; Hanna and Yang 2001; Buckley et al. 2004).

However, two main reasons are worth stressing as re-

sponsible for the uncertainty introduced in this particular

type of comparison. First, the simulated variables rep-

resent averaged quantities over volumes with homoge-

neous properties because of the spatial discretization

and the Reynolds averaging. Therefore, its comparison

with in situ observations is controversial, mostly at those

locations that are considerably affected by local fea-

tures. Second, the spatial discretization smoothes the

complexity of surface physical properties such as orog-

raphy. This can potentially lead to a situation in which

the simulated volume that includes the actual location of

the observational site may not be the most suitable one

to represent the observational variability; instead, nearby

volumes may be more appropriate. This last problem is

referred to as the ‘‘representativeness error.’’ There are

different methodologies to mitigate such adverse ef-

fects. For instance, the enhanced resolution provided by

hybrid approaches makes point comparisons more rea-

sonable; alternatively, the filtered spatial patterns of the

leading EOFs calculated with observations and simu-

lations can be compared (e.g., Volmer et al. 1984). An

interesting approach was proposed by Reid and Turner

(2001) that compared the volume-averaged quantities

simulated at a coarse horizontal resolution (40 km) against

averaged observations within subjectively defined sub-

regions. They showed that averaging observational se-

ries to obtain regional ones filters out local variability

(noise), thus enhancing the regional signal. This led to

stronger relationships between model and data than in

the traditional nearest gridpoint comparison. Reid and

Turner (2001) highlight the advantages of an evaluation

performed at the regional scale, although their defini-

tion of subregions is subjective.

Our work uses a simulation performed with the

Weather Research and Forecasting (WRF) mesoscale

model (Skamarock et al. 2005) and the Reid and Turner

(2001) concept of regional evaluation to analyze the daily

wind variability over a complex terrain region. A more

objective evaluation is attained by using an automated

approach to identify the subregions without any a priori

knowledge of the wind behavior over the area of study.

The Comunidad Foral de Navarra (CFN) in the north-

east of the Iberian Peninsula (Fig. 1) was selected for this

case study. The CFN presents a reasonably dense sur-

face meteorological network that has made it possible to

undertake various analyses of the properties of the

wind field within this region (Garcı́a et al. 1998; Torres

et al. 1999, 2005; Garcı́a-Bustamante et al. 2008, 2009;

Jiménez et al. 2008, hereinafter JEA08; 2009). In par-

ticular, JEA08 studied a subset of the available obser-

vational data to group together the sites with similar

temporal wind variability.

The present study extends and completes JEA08 and

uses their methodologies and classification of observa-

tional regions to assess the reliability of the WRF nu-

merical simulation in reproducing them. The whole

available observational period from 1992 to 2005 is sim-

ulated with a spatial resolution of 2 km. This provides a

long simulation with both a high spatial and temporal

resolution, comparable to that of the observational data-

set. The innovative character of the WRF simulation relies

on its length and spatial resolution (over 13 yr of simula-

tion at 2 km of horizontal resolution). The value of the

WRF simulation should be viewed in the context of

the computational costs of running prognostic mesoscale
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models. Typically, short temporal periods of a few

months or specifically the duration of an observational

campaign are simulated to limit the computational re-

quirements (Zhong and Fast 2003; Cairns and Corey

2003; Rife et al. 2004; Zagar et al. 2006). Although the

computational power reached in the last years makes

multiyear simulations feasible (Buckley et al. 2004; Conil

and Hall 2006; Walter et al. 2006), long simulations at

higher spatial resolutions that better capture the details

of complex orography and allow for evaluations of vari-

ability at longer time scales are still computationally de-

manding and thus have not been so far extensively used.

First, this study explores the accuracy of the mesoscale

simulation to reproduce the wind at each observational

site to analyze representativeness errors and subsequently

compare local versus regional evaluations. The regional

series are obtained by averaging the wind at the sites

within each region identified by JEA08. The use of

average regional series damps local effects in the ob-

servations as well as random representativeness errors

in the simulation; thus, it provides a first framework to

evaluate the numerical simulation performance. Wavelet

analysis (Foufoula-Georgiou and Kumar 1995; Torrence

and Compo 1998) is used to compare the spectral den-

sities of the observed/simulated regional time series. Ad-

ditionally, a complementary evaluation is obtained by

applying the same regionalization methodologies used

by JEA08 to the simulated wind and comparing the re-

sults with those obtained in the observational analysis.

To provide comparable classifications, the regionaliza-

tion methodologies are applied to a subset of the WRF

simulation that replicates in detail the temporal and spatial

availability of observations along the restricted 1999–2002

period used in JEA08. By doing so, we are able to de-

termine the ability of the WRF simulation in reproducing

the subregions found in the observational assessment.

FIG. 1. Location of the CFN within the Iberian Peninsula and meteorological stations (circles). (left) The most relevant geographical

features of the Iberian Peninsula surrounding the CFN, and (right) some regional details within the CFN. Shading represents altitude.

In the right panel, the thin lines represent political boundaries and the crosses indicate the locations of the ECMWF reanalysis/analysis

data closer to CFN.
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As discussed earlier, the distribution of wind sensors

over a region of interest and the availability of observa-

tions through time is an issue of relevance that conditions

our understanding of the variability of any meteorologi-

cal observable. To investigate the impact that the lack of

observations over some areas of the CFN can have on

the analysis of surface wind variability, the WRF simu-

lation is used as a tool to estimate the likely behavior of

the wind field in areas and time intervals with scarcity of

observations. This inference analysis is accomplished in

two steps: first, by applying the regionalization meth-

odologies to the simulation over the complete obser-

vational period (i.e., 1992–2005 instead of 1999–2002);

second, by considering the full simulated domain over

the CFN (8640 grid points) instead of only the nearest

grid points to available observational stations. This al-

lows the evaluation of the extent to which the limited

temporal and spatial coverage of the observational net-

work is appropriate to represent the wind variability over

the area. Therefore, the results of this work are useful for

the design of observational networks.

2. Observational dataset and WRF simulation

The wind dataset used by JEA08 to analyze the wind

variability over the region consisted of the 35 stations

with the best data quality in the CFN meteorological

network (Fig. 1); measurements were available from

1 January 1992 to 30 September 2002. The present study

uses the same 35 sites, with observations extended until

7 October 2005. The wind speed and direction were re-

corded as an integrated average for every 10-min in-

terval, except for seven stations that after 2004 recorded

30-min intervals. The observations were transformed to

daily averages of meridional and zonal components.

The mesoscale model used is the WRF modeling

system (version 2.1.2; Skamarock et al. 2005). The ex-

periment is configured with four domains using two-way

nesting to reach a horizontal resolution of 2 km over the

CFN (Fig. 2). The outermost domain is centered on the

CFN and has a size of approximately 2000 3 2000 km2

and a horizontal resolution of 54 km. The other domains

are nested to progressively reach the desired resolution

of 2 km in the innermost domain imbedding the whole

CFN. The topographic data are obtained from the U.S.

Geological Survey (USGS) global 30 arc-s elevation

(GTOPO30) dataset (Bliss and Olsen 1996; Gesch and

Larson 1996; Verdin and Greenlee 1996). The default

WRF configuration with 31 terrain-following hydrostatic

pressure levels (Laprise 1992) was used in the vertical for

all domains, with the top level being located at 50 hPa.

The longwave and shortwave radiation schemes are

based on Mlawer et al. (1997) and Dudhia (1989), re-

spectively. A modified version of the Kain and Fritsch

(1990, 1993) scheme is employed for the cumulus pa-

rameterization in the three outermost domains (absent

in the innermost domain). The Yonsei University (YSU)

PBL parameterization (Hong et al. 2006) is used in the

four domains. With respect to the microphysics, the WRF

single-moment six-class scheme, which is similar to Lin

et al. (1983), is adopted. Finally, a simple five-layer land

surface model based on Dudhia (1996) is used. The

USGS land use/land cover system with a horizontal res-

olution of 1 km is used to determine the surface physical

properties (Anderson et al. 1976).

Initial and boundary conditions were obtained from

the 40-yr European Centre for Medium-Range Weather

Forecasts (ECMWF) Re-Analysis (ERA-40; Simmons

and Gibson 2000; Uppala et al. 2005) from 1992 to August

2002. Afterward, the operational ECMWF analyses are

employed. The horizontal resolution of both datasets is

18 latitude 3 18 longitude. The model is initialized as

a ‘‘cold start’’ at 0000 UTC each day and run for 48 h,

updating the boundary conditions every six hours and

recording data every hour. The first 24 h are discarded

as model spinup, retaining the outputs for the following

24 h and calculating the average of the meridional and

zonal wind components at 10 m above ground level to

obtain the daily-mean surface wind field. The process

was repeated for the whole observational period: 1 Jan-

uary 1992–7 October 2005. This sequence of short runs

with numerous reinitializations has been shown to out-

perform long-term continuous simulations with only

one initialization (Pan et al. 1999; Qian et al. 2003; Lo

et al. 2008) and is becoming increasingly accepted and

adopted in recent years (Conil and Hall 2006; Zagar

et al. 2006).

3. Methods and rationale

a. Background: Regionalization methodologies
and previous results

JEA08 performed the wind regionalization with two

methodologies based on principal component analysis

(PCA; Preisendorfer 1988; von Storch and Zwiers 1999).

The first one identifies the subregions by grouping the

sites with similar loads on their principal modes using

cluster analysis (CA). A two-step CA approach was

adopted (Milligan 1980): in the first step, the hierarchi-

cal complete linkage algorithm was used to decide the

number of clusters (subregions); in the second step, the

nonhierarchical K-means scheme was used to reorder

the stations. The second methodology rotates the prin-

cipal modes to isolate the subregions using the varimax

scheme. The main difference between the classifications
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is that the rotational procedure allows for overlapping

subregions.

Because the existence of missing data in the obser-

vational series could potentially have an impact on the

PCA results, a reduced subset of 769 daily-mean wind

fields with a good spatial representation (more than 80%

of the stations available) and a homogeneous distribu-

tion through the year was used for the identification of

the subregions. The so-called reduced dataset spanned

1999–2002.

The CFN wind subregions obtained in JEA08 with

both methodologies are reproduced in Fig. 3 (modified

from JEA08) for the sake of comparison with model

results. Both regionalizations identified similar groups

of stations: a subregion in the Ebro valley (EV; circles);

a group mainly formed by the mountain stations (MS;

squares); several groups of stations with a north–south

orientation were identified by the CA approach (hexa-

gons, pentagon, and diamonds in Fig. 3a), whereas the

rotational procedure integrated them into one sub-

region (NS; diamonds in Fig. 3b); and a fourth subregion

formed by stations in the narrow valleys to the north of

the Ebro basin (NV; triangles). Particularly relevant for

this study was the finding that the meridional wind vari-

ability is rather similar in all the emergent subregions,

with the zonal wind variability being responsible for the

differences between them. The EV and NV subregions

present similar zonal variability, probably because of

the rather parallel orientation of their valleys, but they

were kept as independent subregions in JEA08 because

of their discrimination by the two regionalization ap-

proaches and their location at two different valleys.

b. Evaluation of the WRF numerical simulation

The performance of the WRF simulation is first eval-

uated at the local scale by comparing the observed and

FIG. 2. Spatial configuration of domains used for the numerical simulation: four domains two-way nested with 54, 18, 6, and 2 km of

horizontal resolution. The orography of each domain is displayed according with their particular resolution. The number of grid points of

each domain (west–east by north–south) is also displayed.
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simulated variability at the individual stations. By doing

so, we will illustrate the advantages of the regional ap-

proach adopted here and the added value of the re-

gional simulation with respect to the original reanalysis/

analysis fields.

Second, the performance at the regional scale is eval-

uated with two independent analyses. The first evaluates

the ability of the simulation to reproduce the temporal

wind variability at the subregions identified in JEA08.

The second approach applies the regionalization meth-

odologies to the simulated wind, thus allowing for the

evaluation of the ability of the simulation to replicate

the spatial distribution of observed subregions. Wavelet

analysis is applied to explore the observed and simulated

variability in the frequency domain.

Because the WRF simulation provides a higher spatial

and temporal resolution than the observational network,

it is necessary to manipulate the simulation to provide

comparable datasets. Two simulated datasets are created

to replicate the spatial and temporal distribution of ob-

servations at the 35 sites (Fig. 1):

d The spatially and temporally masked simulation

(STMS) consisting of the simulated wind at each site

as represented by the nearest grid point: Here, spatial

masking refers to the fact that only the 35 nearest grid

points to the observational sites are used for analysis,

whereas the temporal mask means that the simulated

values corresponding to a missing observation are sup-

pressed. This WRF dataset spans the complete obser-

vational period from 1992 to 2005.
d The reduced spatially and temporally masked simu-

lation (reduced STMS), which is comparable to the

reduced observational dataset in JEA08 and also con-

sists of the same 769 days over the period 1999–2002

used to identify the observational subregions.

The ability of the numerical simulation to reproduce

the wind variability over the CFN will first be evaluated

by comparing the observed and simulated temporal wind

variability at the different observational subregions. The

grouping of stations obtained with the methodology

based on the rotational procedure (Fig. 3b) is used to

FIG. 3. Wind regionalization obtained by JEA08 after applying the methodology based on (a) cluster analysis and (b) rotation of the

principal modes to the observational reduced dataset that spans the 1999–2002 period (Table 1). Locations with the same symbol indicate

that the sites present similar temporal wind variability and therefore define a subregion. The regionalization of (b) is used in this work to

calculate the averaged time series at each subregion (see the key).
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define the subregions. Though both are comparable, the

rotational approach does not produce single station groups

(Fig. 3a), a desirable feature to emphasize the regional

evaluation. ‘‘Regional time series’’ refers to the time se-

ries resulting from averaging the series from the stations

belonging to each of the subregions isolated with the

rotational procedure (Fig. 3b).

This approach allows for an evaluation of the per-

formance of the simulation in the observational regions.

However, the question remains open as to whether the

model would provide a similar classification if the same

regionalization analysis performed on observations was

carried out for the WRF simulation.

Therefore, a complementary evaluation of the WRF

simulation will be attained by applying the two different

regionalization approaches to the reduced STMS in the

simulation and comparing results with those from ob-

servations (Fig. 3). Despite the relatively high resolu-

tion, such comparison is still subject to the effects of

representativeness errors and local features that are not

captured by the model. A detailed agreement between

regionalizations is therefore not to be expected, al-

though one would hope to find similarities between their

main characteristics.

c. Inference analyses: The effects of observational
sampling

On the basis of the accuracy displayed by the simu-

lation during the evaluation phase, the simulation is

subsequently used to address the impact that the limited

temporal and spatial coverage of observations may

produce on the analysis. With this aim, the wind re-

gionalization methodologies are applied avoiding tem-

poral and/or spatial masking. Additional subsets of the

simulated wind for the specific purposes of the inference

analysis are created:

d The spatially masked simulation (SMS), which con-

sists of the simulated wind nearest each of the 35 ob-

servational sites: It includes no temporal masking, thus

spanning the entire 1992–2005 simulated period.
d The complete simulation, which consists of the wind

series at all the simulated (8640) grid points for the

entire 1992–2005 period (i.e., all available information

from the WRF simulation).

The regionalization obtained with the SMS dataset

will be compared with the regionalization obtained by

JEA08 (Fig. 3). This comparison allows the influence of

the length of the observational period in identifying the

subregions to be analyzed. The influence of the obser-

vational spatial coverage in identifying the subregions

will be analyzed by performing the regionalization with

the complete simulation. These two analyses have im-

plications for the design of observational networks. The

temporal coverage and the number of time series in each

observational (reduced and complete) and simulated da-

taset (STMS, reduced STMS, SMS and complete) used in

the study are summarized in Table 1.

4. Results

a. Local versus regional

A comparison of the reduced dataset from JEA08

with its equivalent dataset from the WRF simulation

(reduced STMS; Table 1) is displayed in Fig. 4, where

the correlation (circles) and the root-mean-square error

(RMSE; circumferences) between observed and simu-

lated wind are plotted for each site and wind component.

The RMSE at each site is calculated with the time series

of the anomalies after removing the climatological mean

x and subsequent normalization by the standard de-

viation sobs of the observational time series:

RMSE 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N
�
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i51
[(x
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� x

obs
)

i
� (x

wrf
� x

wrf
)

i
]2

v

u

u

t

s
obs

. (1)

The zonal correlation increases toward the south, with

the highest values at stations in the EV and MS subregions

(Fig. 4a). The lowest correlated sites, mainly located in the

NS and NV subregions, are where the normalized RMSE

values are highest (often above one; Fig. 4b). The me-

ridional correlation is high everywhere (Fig. 4c), except at

stations 15 and 24 (Fig. 1), where the normalized RMSE

values are high (Fig. 4d). The low (high) values of cor-

relation (RMSE) depict the locations of poorer model

performance.

A quantification of the influence of representativeness

errors is not straightforward, but it can be estimated by

comparing the highest correlation and lowest RMSE

between the site and the 25 nearest grid points, which is

also displayed in Fig. 4. The smallest (largest) RMSE

(correlation) among the nearest 25 grid points is repre-

sented with a circle (circumference), which shows the

TABLE 1. Characteristics of the wind datasets used in the

comparison of observations and the WRF simulation.

Simulated Observational Temporal Time Missing

dataset dataset coverage series values

Reduced STMS Reduced 1999–2002 35 Yes

STMS Complete 1992–2005 35 Yes

SMS — 1992–2005 35 No

Complete — 1992–2005 8640 No
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correlation (RMSE) with more distant grid points only

when improved values are found.

The sites with the best RMSE and correlation values

do not show better values when compared with more

distant grid points (Fig. 4). However, the sites with poorer

scores (mostly in the NS and NV subregions) often show

better correlation and lower RMSE at some nearby grid

point than at the closest one. This indicates that a mis-

representation of the observed variability could be taking

place at some locations by assigning observations to the

nearest grid point. The reasons for this behavior could be

related to the discretization of the orography and/or the

surface physical properties. However, the effects of the

representativeness errors are small, which indicates that

the use of the nearest grid point seems to be a reasonable

approximation for this particular case.

It was argued in the introduction that averaging local

observations into regional series filters out local variabil-

ity and enhances the regional signal. Because section 4b

describes an evaluation of the model performance at

the scale of the subregions found in JEA08, it is in-

teresting to illustrate the impact on the simulation per-

formance associated with the change from local scales to

subregional averages. The comparison has been per-

formed using Taylor (2001) diagrams. The Taylor dia-

gram used herein [different from that introduced by

FIG. 4. (a),(c) Correlation and (b),(d) RMSE of the observed and simulated zonal and me-

ridional wind, as described in the text. The inner circle diameters are proportional to the

correlation between observations and simulations from the nearest grid point; the outer cir-

cumferences radius shows the highest correlation between a site and the nearest 25 grid points.

For RMSE [Eq. (1)], the external circumferences are proportional to the RMSE between the

site and the nearest grid point; the internal radii represents the smallest RMSE among the

nearest 25 grid points. White (gray) circles indicate that the RMSE is lower (higher) than 1.
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Taylor (1917) and Montgomery (1950)] is a polar plot

to compare two time series, usually an observation–

simulation pair. The angle depicts correlation ranging

from 0 ( y axis) to 1 (x axis). The radial coordinate rep-

resents the ratio of the standard deviations of the two

time series (normalized Taylor diagram). Hence, a ‘‘per-

fect’’ agreement between the observation–simulation

pairs reaches a value of 1 over the x axis. Because the

standard deviations of two time series and their corre-

lation are related with the RMSE of the anomalies by

the law of cosines (see inset in Fig. 5a), the RMSE is

also displayed in the diagram [gray isolines centered in

(1, 0)]. Hence, the diagram is useful to summarize the

correlation, RMSE of the anomalies, and ratio of the

variances between observed–simulated pairs (Taylor

2001).

Figure 5 shows Taylor diagrams (Taylor 2001) calcu-

lated with the simulated and observed wind components

for each region, both for the regional averages and the

individual sites. In most subregions, the averages agree

better than when comparisons are made at the site level.

A clear example is the zonal wind component of the MS

subregion (Fig. 5c) or the meridional wind component

of the NS subregion (Fig. 5f). This shows the beneficial

effect of averaging the observed and simulated series to

mitigate local effects and reinforce the regional signal.

The simulation shows a better performance reproducing

the wind variability in EV and MS subregions than in NV

or NS. This last subregion shows the worst performance.

Finally, the added value of the WRF simulation over

ECMWF results is determined comparing both models

wind against observations at the four subregions (Fig. 6).

In the case of the WRF simulation, the regional wind

components are calculated with the reduced STMS

(Table 1), as in Fig. 5. Hence, there is a simulation–

observation pair for each subregion (solid symbols). In

the case of the ECMWF, the daily averaged surface wind

components at the four grid points closest to the CFN

(Fig. 1) are compared with the regional wind com-

ponents at each subregion. Therefore, there are four

observation–simulation pairs for each subregion (hollow

symbols), because it is impossible to obtain a time series

for each subregion with the coarse spatial resolution of

the ECMWF data (18).

Both models reproduce more satisfactorily the me-

ridional wind than the zonal wind (Fig. 6a,b). This is not

surprising, given the results in Figs. 4 and 5. The reason

for this may be the location of the CFN between the two

northern Iberian mountain systems (i.e., Cantabrian

and Pyrenees) that strongly modify surface circulations,

blocking and channeling the flow between them and

probably producing similar meridional wind variability

over the whole CFN (JEA08). The mountain systems are

large enough to be represented in the simulation, even

with the coarser ECMWF spatial resolution (more than

100 km), so the ECMWF data capture the meridional

wind variability introduced over the CFN as a conse-

quence of the surface flow channeling. For the meridi-

onal component (Fig. 6b), correlation values between

either WRF or ECMWF and the observations are around

0.9 and the RMSE is below 1.0. The WRF simulation

slightly increases the correlation shown by the ECMWF

data (Fig. 6b) with a tendency to increase variability,

leading to overestimation in the NS and NV subregions.

There is better agreement with observations in the MS

and EV subregions.

The WRF model statistics compare better with the

observational zonal component (Fig. 6a), especially for

the EV and NV subregions, where correlations increased

from 0.2 to 0.85 and from 0.4 to 0.8, respectively. The

best agreement between ECMWF data and observa-

tions in the case of the zonal component was in the MS

subregion. Because the zonal wind variability causes the

differences between the subregions, it can be expected

that the inclusion of a more realistic orography will sub-

stantially impact the accuracy of its simulation. In this

way, the coarser ECMWF horizontal resolution is not

able to resolve the CFN mountain ridges leading to low

correlation at the valley subregions and better scores for

the MS subregion. WRF’s higher spatial resolution im-

proves representation of the orography and the simu-

lation of the surface zonal component variability at the

valley subregions.

This interpretation is purely dynamical. It neglects the

thermal forcing that may also be better represented by

a mesoscale model, contributing also to the better scores

shown by WRF.

b. Evaluation: WRF replication of observed
regional variability

In the following section, WRF’s ability to reproduce

the regional wind variability is measured by 1) compari-

son of the temporal wind variability in the subregions

identified by JEA08 and 2) comparisons of the regional-

ization methodology results applied to simulated and

observed winds.

1) EVALUATION OVER OBSERVATIONAL

REGIONS

Table 2 gives correlation, bias, and normalized RMSE

for the STMS datasets in Table 1. That is, the entire 1992–

2005 period is used in the comparison. These scores agree

well with those displayed in Fig. 6 for the reduced data-

sets (1999–2002). This extends the previous interpre-

tations to the whole observational period. To further

illustrate this statement, the regional time series of the
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FIG. 5. Normalized Taylor diagrams comparing the (left) zonal and (right) meridional wind

components at each of the four subregions identified with observations (Fig. 3b). The hollow

symbols represent the comparison at each observational site, whereas the solid symbols rep-

resent the comparison of the regional time series. The reduced datasets are used in the com-

parison (Table 1).
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zonal component from the STMS and the complete ob-

servational datasets (Table 1) are displayed in Fig. 7. This

component has been selected for illustration, because

it is responsible for the different wind variability of

the subregions (JEA08). The series show similar tem-

poral variability within and outside the reduced period, in

concordance with the similar scores found in Fig. 6 and

Table 2. The time evolution of the RMSE is also displayed

in Fig. 7. There is a tendency toward lower RMSE values

during summer than winter, revealing a certain seasonal

behavior in the performance of the numerical simulation.

At the EV, MS, and NV, the numerical experiment is

insensitive to the station number, but it has some rele-

vance for the NS subregion, which always had few sta-

tions, particularly before the year 2000.

To avoid introducing potential biases by constructing

regional time series from a variable number of stations

(Fig. 7) with different variances, each time series was

standardized by subtracting its mean and dividing by

its standard deviation before calculating the regional

average. The correlation between these observed and

simulated regional time series (r 5 0.85, 0.85, 0.52, and

0.76 for EV, MS, NS, and NV, respectively) are similar

to those obtained with the averaged raw series (Fig. 7).

This indicates that the regional signal is neither degraded

nor improved with the standardization and therefore is

not subject to the dominant variability of a few sites.

Complementary information to evaluate the perfor-

mance of the simulation in reproducing the observed

temporal variability is obtained through a Morlet wavelet

analysis (Foufoula-Georgiou and Kumar 1995; Torrence

and Compo 1998). These are shown for the observed

and simulated regional zonal component of the EV and

MS subregions in Fig. 8. The EV shows high similarities

between the observed and simulated power spectra

(Figs. 8a,c, respectively). It shows activity at the highest

frequencies throughout the whole observational period.

The lowest frequencies reflect an alternation of signifi-

cant contributions to the annual cycle. The MS, on the

contrary, shows observational wavelet spectra with a

significant annual band during the whole observational

period (Fig. 8b). The simulation reproduces partially the

density around the annual band, but not as continuously

as in the observations (Fig. 8d). The observed reduction

in variance after the year 2000 for periods between

200 and 20 days is captured by the simulation. This re-

duction may be caused by the varying number of stations

available to calculate the regional time series (Fig. 7).

FIG. 6. Normalized Taylor diagrams comparing the daily-mean (a) zonal and (b) meridional wind components

from the WRF simulation (solid symbols) and the ECMWF reanalysis/analysis (hollow symbols) with the observed

wind at each of the four subregions (Fig. 3b): EV (circles), MS (squares), NS (diamonds), and NV (triangles). The

ellipses enclose the comparison of the observations at a given subregion and the ECMWF simulations at the four

closest grid points to the CFN (see zoomed area in Fig. 1). The arrows highlight the different performance displayed

by the ECMWF and the WRF simulation. The comparison is restricted to the 769 days of the reduced datasets.

TABLE 2. Correlation, bias (observations 2 simulations), and

RMSE [Eq. (1)] calculated with the regional time series of the

zonal/meridional wind components from the complete observa-

tional dataset and the STMS (Table 1).

Correlation Bias RMSEa/Sdobs

u/y u/y u/y

EV 0.86/0.91 0.46/20.72 0.62/0.43

MS 0.86/0.91 20.24/20.86 0.52/0.43

NS 0.54/0.86 20.48/20.87 1.31/0.63

NV 0.74/0.86 20.21/20.31 1.27/0.71
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The extent to which the wavelet power spectra are sen-

sitive to this limitation was analyzed using the com-

plete time series from the numerical simulation (SMS;

Table 1). The resulting wavelet power spectra are dis-

played for the EV and MS subregions in Figs. 8e,f, re-

spectively. Both spectra resemble those calculated with

a variable number of stations. This points to a real re-

duction in regional variability being responsible for the

decay in variance observed during the last years (Fig. 8b).

The wavelet power spectra of the zonal wind component

at the NS and NV subregions also agree with the simu-

lation (not shown), but with some degradation evident in

the NS subregion, as expected from fewer time series

(Fig. 7c) and a worse representation of wind variability at

two of its sites (Fig. 4).

Meridional wind variability is very homogeneous over

the CFN, so their regional wavelet power spectra are

similar in all the subregions, with similar structure to

that displayed for the zonal wind of the EV subregion

(Fig. 8a), wherein both components present equivalent

variability (JEA08). Better agreement between the wave-

let spectra for observations and simulations is found for

this component, because the simulation reproduces the

meridional component more accurately (Table 2).

2) REGIONALIZATION IN THE WRF SIMULATION

The regionalization methodologies used by JEA08 to

identify the wind subregions (see section 3a) are applied

to the WRF simulation. The reduced STMS dataset pro-

vides data comparable to those used to identify the ob-

served subregions (Table 1).

The first step in both regionalization methodologies is

a PCA (Preisendorfer 1988; von Storch and Zwiers 1999).

The regionalization based on the rotation of the main

modes of variation identifies one subregion from each

retained mode; because the purpose of this analysis is to

evaluate the accuracy of the numerical simulation to re-

produce the spatial coverage and the wind variability of

the subregions identified with observations (EV, MS, NS,

and NV), a total of four principal modes are retained.

This is in agreement with the CA methodology for which

identified subregions do not depend on the number of

principal modes retained (JEA08).

The classification obtained with the CA methodology

is displayed in Fig. 9a. Overall, the regionalization ob-

tained (Fig. 9a) is similar to that obtained with observa-

tions (Fig. 3a), with some differences in the boundaries

between subregions. Such discrepancies were expected,

because the observations are affected by local effects and

the simulation suffers from representativeness error.

The regionalization obtained with the rotational pro-

cedure (Fig. 9b) shows, as does Fig. 3, the overlapping

classifications that are in contrast to the more rigid CA

method. The EV valley subregion (circles) includes most

of the same stations as in Fig. 3b. The MS subregion

(squares) is also identified as including most of the sites

of its observational counterpart. Another subregion

(triangles) mainly associated with the NV is identified

FIG. 7. The top graphs for (a)–(d) show the 20-day moving av-

erages of zonal wind in the (a) EV, (b) MS, (c) NS, and (d) NV

subregions (Fig. 3b) calculated with the complete observational

dataset (solid lines) and the STMS (dashed lines). The correlation

and the bias (observed minus simulated mean) of the regional se-

ries before applying the moving average are also displayed. The

bottom graphs for (a)–(d) represent the 20-day moving-average

RMSE (black lines) and the number of available stations at each

particular day (gray lines). The gray area highlighted on the time

series represents the time span of the reduced datasets (Table 1).
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and includes some stations from the Ebro valley. An

additional cluster is isolated (diamonds) that includes

sites from the observational NS and NV groups. Because

its principal component showed slightly higher and sig-

nificant correlation values with the observational NS

principal component, it was classified as such in the sim-

ulation. The regionalization in Fig. 9b is similar to that

with the observed surface wind (Fig. 3b). The main

FIG. 8. Wavelet spectral power of the zonal wind component time series for the (left) EV and

(right) MS subregions for (top) the complete observational dataset, (middle) the STMS dataset,

and (bottom) the SMS dataset. The shaded areas represent normalized variances higher than 1,

2, 5, and 10, whereas the black thick contour lines enclose regions of confidence above 95% for

a first-order autoregressive process. The dashed line represents the ‘‘cone of influence,’’ below

which edge effects become important (Torrence and Compo 1998).

FIG. 9. Regionalization configurations attained after applying the methodology based on

(a) the CA and (b) the methodology based on the rotation of the principal components to the

reduced STMS dataset (Table 1). The different symbols represent locations with similar

temporal wind variability that define the identified subregions.
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difference is the enlargement of the NS subregions with

stations from the NV subregion. The identification prob-

lems in the NS subregion are not surprising, given that

region’s poorer scores (Fig. 6).

Because the rotation methodology assigns one prin-

cipal mode of variation to each subregion, rotated prin-

cipal components provide information of the temporal

wind variability at the subregions (JEA08). The rotated

principal components in the simulation are compared in

Fig. 10 against their counterparts in the observations to

evaluate the performance of the simulation in repro-

ducing the temporal wind variability at the subregions.

Correlation values are over 0.75, except for the NS sub-

region, which shows a rather low correlation score among

the observed and simulated principal components (r 5

0.33) but improves after the year 2000, when there are

more stations reporting.

Complementary information about temporal variabil-

ity at the subregions can be provided by spectral analysis

of rotated principal components. The reduced STMS

spans 1999–2002 with many missing data, so wavelet

analysis is inappropriate and temporal wind variability

was assessed with alternative spectral techniques that

can be used with unevenly spaced data (Deeming 1975;

Belserene 1988; JEA08). Normalized spectra of the

simulated and observed rotated principal components in

Fig. 11a show that the observed spectrum in the EV

subregion is reproduced with some distortion at the

lower frequencies. The MS spectra (Fig. 11b) are also

quite similar, but with overestimation by the model at

the higher frequencies and some displacement at the

lower ones with respect to observations. The spectra

from the NS subregion do not agree very well (Fig. 11c),

which is evidence of poorer wind simulation (see also

Figs. 6, 10c). This could be attributed, in part, to the few

stations in this subregion and the model’s poor repre-

sentation of the wind variability at two of those sites

(15 and 24; Fig. 1). The NV subregion shows qualitative

agreement (Fig. 11d) between observational and simu-

lated spectra, with overestimation of the spectral density

at the high frequencies but better agreement at lower

frequencies. The similarity of spectra for the EV (Fig. 11a)

and NV regions (Fig. 11d) highlights their similar wind

variability (JEA08).

FIG. 10. The 20-day moving-average filter outputs of the rotated

principal components associated with the (a) EV, (b) MS, (c) NS

and (d) NV subregions. The solid lines are associated with the

calculations performed with the reduced observational dataset

(from JEA08), whereas the dashed lines are associated with the

reduced STMS dataset (Table 1). The correlation between the

unfiltered time series at each particular subregion is also shown.

FIG. 11. Spectral analysis of the rotated principal components

displayed in Fig. 10. The shaded areas (black lines) represent the

normalized spectra calculated with the observational (simulated)

series.
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c. Inference analysis: The effects of the
observational sampling

The higher spatial and temporal sampling of the WRF

simulation is appropriate to further analyze the surface

wind variability over the CFN. This analysis leans on the

accuracy of the simulation in identifying the wind sub-

regions and reproducing the observed wind variability

described in the previous sections.

1) REGIONALIZATION OVER THE 1992–2005
PERIOD

The simulation has no missing values, so it can be used

to analyze the influence of the observational period on

the identification of subregions in JEA08 (1999–2002)

and answer the question of how the regionalization is

affected when the observational period is extended. The

complete time series within the SMS dataset from 1992

to 2005 of the 35 simulated grid points near observa-

tional sites is used.

The CA classification (Fig. 12a) compares well with

the reduced STMS (Fig. 9a) and observational data

(Fig. 3a). The rotational approach (Fig. 12b) also dis-

plays similar regions (Fig. 12b) as to those of the reduced

STMS classification (Fig. 9b) and those of observations

(Fig. 3b). These similarities suggest that the identified

wind subregions are robust for the whole observational

period from 1992 to 2005.

The rotated SMS principal components permit an

analysis of temporal wind variability by subregions for

the whole period (1992–2005), without the handicap of

missing data. To illustrate this advantage of the sim-

ulation over observations, the rotated principal com-

ponents calculated with the 1999–2002 observational

dataset are extended as much as possible and compared

against the rotated SMS principal components. With this

aim, the standardized anomalies of the observed wind

time series for those days with more than 10 wind ob-

servations available are projected onto the eigenvector

defining each observational subregion; that is, the prin-

cipal components are evaluated for the 1992–2005 pe-

riod using the 1999–2002 eigenvectors (see JEA08 for

further details). The original rotated principal compo-

nents and the projections are virtually identical in the

overlapping parts (1999–2002). The wavelet power spec-

tra of these projected time series and of the SMS rotated

principal components are displayed in Fig. 13. Results

for the NS subregion are omitted, because the simula-

tion failed to reproduce the wind variability at this

subgroup (Figs. 10c, 11c). Missing observations prevent

conclusions from being drawn at the lower frequencies

over most of the period (Fig. 13, left), but the power

spectra from the simulation do not suffer this limitation

(Fig. 13, right). Because the rotated principal compo-

nent associated with the EV is in concordance with both

the zonal and meridional wind component of the sub-

region (JEA08), the wavelet power spectra of the EV

subregion (Fig. 13b) has a structure similar to that cal-

culated with the mean zonal time series (Fig. 8a). The

rotated principal component of the MS agrees with the

zonal subregion component (JEA08), and its wavelet

spectra (Fig. 13d) is similar to that calculated with the

FIG. 12. As in Fig. 9, but for the SMS dataset (Table 1).
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zonal wind of the subregion (Fig. 8b). These similari-

ties support the simulation’s ability to reproduce the

wind variability in these subregions. The similarities

of wind variability in the EV and NV subregions are

also captured by the simulation, as indicated by the

similarities in wavelet spectra of their principal com-

ponents (Figs. 13b,f).

2) REGIONALIZATION OVER THE 1992–2005
PERIOD AND THE FULL DOMAIN

The limited number of observational sites used in the

regionalization (Fig. 1) raises the following question:

how might spatial sampling affect the final subgroups?

Because the numerical simulation does well in identi-

fying the observed subregions and reproducing their

temporal variability, the larger spatial coverage of the

simulation can be used to shed some light on this ques-

tion. With this aim, the wind regionalization is repro-

duced with the complete simulated dataset and therefore

avoiding any temporal or spatial mask.

The wind regions obtained in this exercise with the

CA and the rotational approach lead to the same classi-

fication, thus providing robustness to the results achieved.

The visualization of the rotated principal component re-

sults is somewhat obscured by the overlapping and the

higher density of grid points. The results are shown

herein for the CA methodology in Fig. 14. The sub-

regions resemble those obtained with the observed sur-

face wind (Fig. 3a) and the SMS (Fig. 12a). The greater

spatial coverage of the simulation allows the identifi-

cation of other subregions outside the CFN political

boundaries. The EV subregion (circles) is well defined

by mountain systems that shape the basin. The valleys to

the north of the Aralar ridge and the NV subregion are

also included in this cluster, indicating a similar tem-

poral variability of these areas. The similar wind vari-

ability of the EV and NV was already noticed, but the

numerical simulation cannot distinguish them as separate

subgroups. The regionalization identifies a subregion

(cross symbol) to the east of the CFN that includes

some parts of the Ebro valley that had no observations.

An MS subregion (squares) includes the Pyrenees from

the northern sierras of Bidasoa to Leyre and also some

of the mountain sites in the eastern (Izco, Ujue, and

San Pedro) and western Sierras (Aralar, Santiago, and

Andia; see Fig. 1 for geographical details). However,

FIG. 13. (left) Wavelet spectral power of the standardized projections calculated with the complete observational

dataset and (right) rotated principal components calculated with the SMS dataset for the (top) EV, (middle) MS, and

(bottom) NV subregions. As in Fig. 8, but the shaded areas are normalized variances higher than 1, 2, 5, and 10; the

black contour lines enclose areas of confidence above 95% for a first-order autoregressive process, whereas the

dashed line represents the cone of influence.
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site 20 in the northernmost limits of the CFN is ex-

cluded from this group in the simulation, whereas it was

an MS site in Fig. 3.

Another mountain subgroup (stars) is found outside

the CFN in the Iberian system. The subregion labeled

before as NS (diamonds) extends now beyond the pre-

viously detected area in the north of the CFN and into

surrounding areas. Finally, Fig. 14 shows a subregion

(triangles) to the north of the Pyrenees and Cantabrian

mountains outside the CFN political boundaries.

5. Summary and conclusions

The daily-mean wind variability over complex terrain

was simulated at 2-km horizontal resolution with the

mesoscale WRF model and compared with observa-

tions from the period between 1992 and 2005 for four

subregions that enclose observational sites with similar

temporal wind variability (EV, MS, NV, and NS), as

identified by JEA08. The evaluation at the regional

scale rather than at the sites filters out noise associated

with local effects or representativeness errors and re-

inforces the signal; thus, it provides a more appropriate

comparison.

Meridional wind variability is more accurately repro-

duced than zonal wind variability. This is a consequence

of the similar meridional wind variability observed over

the whole study region, attributed to the influence of

large mountain systems adequately represented by the

simulation. The zonal variability defines the differences

between the wind regions, because it is more affected by

the regional features that are not as well represented as

the larger-scale topographic features. Wavelet analyses

showed reasonably good replication of observed vari-

ability by the simulation. It revealed a continuous an-

nual band for the zonal wind component at the mountain

subregion and intermittent ones at the valley subregions

and for the meridional wind component.

FIG. 14. Regionalization configuration attained after applying the methodology based on the

CA to the complete simulated dataset (Table 1). The simulated grid points with similar tem-

poral wind variability are represented with the same symbol and therefore define the identified

subregions.
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The model performance was also evaluated by apply-

ing the regionalization methodologies to a simulated

dataset comparable to observations in its temporal and

spatial distribution. The regionalization obtained with

the simulation identifies the main characteristics of the

subregions, but with some differences in their bound-

aries. The simulated variability at the EV, MS, and NV

subregions is similar to that found in observations. The

NS subregion was also detected in the simulation, but its

temporal variability was not well reproduced, probably

because there were fewer stations in this subregion.

Based on the accuracy shown by the numerical sim-

ulation, the WRF results were used to evaluate the

effects of the limited observational sampling and the

influence of the observational period on the classifica-

tion of subregions. The latter analysis led to similar

subregions, which corroborates the results obtained for

the reduced period. The effect of limiting the number of

observational sites was investigated by applying the re-

gionalization with the complete simulated wind field

over the CFN for the complete simulated period. Vir-

tually the same subregions are identified over the CFN

as well as additional subregions outside the observa-

tional network coverage, thereby suggesting that even

a limited number of sampling stations can reasonably

capture the spatial wind variability over the study area.

The results also provide valuable information to improve

the observational network. The wind variability at the EV,

MS, and NV is appropriately captured, but increasing the

number of stations at the NS subregion would be desirable.

Some improvement of observational density at mountain

tops over the Pyrenees to extend the MS coverage is rec-

ommended. In addition, it would be useful if wind obser-

vations at the subregions identified outside the network

coverage are recorded. Because these subregions are well

defined covering large areas, only a few stations in each

subregion would be enough to capture their wind vari-

ability and provide useful information for future studies.
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